Review of multivariate statistical process monitoring

A comprehensive literature survey of multivariate statistical process monitoring methods of recent years is presented. Principle component analysis based methods are reviewed according to their emphases on either data attributes, such as missing value, outliers, nonlinear, time-varying, serial correlation, non-Gaussian distribution and multi-scale, or operational attributes such as multi-block, multi-mode, transition process, multi-stage . All the methods mentioned in this survey can be extended to other statistical models easily.

[1]  Chandan Srivastava,et al.  Support Vector Data Description , 2011 .

[2]  Gang Rong,et al.  Nonlinear process monitoring based on maximum variance unfolding projections , 2009, Expert Syst. Appl..

[3]  S. Qin,et al.  Multiway Gaussian Mixture Model Based Multiphase Batch Process Monitoring , 2009 .

[4]  Jesús Picó,et al.  On-line monitoring of batch processes based on PCA: does the modelling structure matter? [corrected]. , 2009, Analytica chimica acta.

[5]  I. V. Rudakova,et al.  Fault diagnosis in chemical processes with application of hierarchical neural networks , 2009 .

[6]  Zhiqiang Ge,et al.  Improved kernel PCA-based monitoring approach for nonlinear processes , 2009 .

[7]  Yew Seng Ng,et al.  An adjoined multi-model approach for monitoring batch and transient operations , 2009, Comput. Chem. Eng..

[8]  U. Kruger,et al.  Moving window kernel PCA for adaptive monitoring of nonlinear processes , 2009 .

[9]  Xiaoling Zhang,et al.  Multiway kernel independent component analysis based on feature samples for batch process monitoring , 2009, Neurocomputing.

[10]  Jialin Liu Fault Detection and Classification for a Process with Multiple Production Grades , 2008 .

[11]  Rajagopalan Srinivasan,et al.  Multivariate Temporal Data Analysis Using Self-Organizing Maps. 2. Monitoring and Diagnosis of Multistate Operations , 2008 .

[12]  Lei Xie,et al.  Statistical‐based monitoring of multivariate non‐Gaussian systems , 2008 .

[13]  S. Qin,et al.  Multimode process monitoring with Bayesian inference‐based finite Gaussian mixture models , 2008 .

[14]  In-Beum Lee,et al.  Fault Detection of Non-Linear Processes Using Kernel Independent Component Analysis , 2008 .

[15]  Barry Lennox,et al.  Monitoring a complex refining process using multivariate statistics , 2008 .

[16]  Rajagopalan Srinivasan,et al.  Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control , 2008, Comput. Chem. Eng..

[17]  Fuli Wang,et al.  Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes , 2007 .

[18]  Leo H. Chiang,et al.  Industrial implementation of on-line multivariate quality control , 2007 .

[19]  Y. Heyden,et al.  Robust statistics in data analysis — A review: Basic concepts , 2007 .

[20]  Jesús Picó,et al.  Online monitoring of batch processes using multi-phase principal component analysis , 2006 .

[21]  In-Beum Lee,et al.  Fault detection and diagnosis based on modified independent component analysis , 2006 .

[22]  J. Romagnoli,et al.  A multi-scale orthogonal nonlinear strategy for multi-variate statistical process monitoring , 2006 .

[23]  Jie Zhang,et al.  Performance monitoring of processes with multiple operating modes through multiple PLS models , 2006 .

[24]  Pedro M. Saraiva,et al.  Multiscale statistical process control with multiresolution data , 2006 .

[25]  In-Beum Lee,et al.  Adaptive multivariate statistical process control for monitoring time-varying processes , 2006 .

[26]  Chonghun Han,et al.  On-Line Process State Classification for Adaptive Monitoring , 2006 .

[27]  P. A. Taylor,et al.  The impact of missing measurements on PCA and PLS prediction and monitoring applications , 2006 .

[28]  Chonghun Han,et al.  Robust Recursive Principal Component Analysis Modeling for Adaptive Monitoring , 2006 .

[29]  Jose A. Romagnoli,et al.  Robust multi-scale principal components analysis with applications to process monitoring , 2005 .

[30]  George W. Irwin,et al.  Introduction of a nonlinearity measure for principal component models , 2005, Comput. Chem. Eng..

[31]  G. Irwin,et al.  Process monitoring approach using fast moving window PCA , 2005 .

[32]  Min-Sen Chiu,et al.  Nonlinear process monitoring using JITL-PCA , 2005 .

[33]  Peter A Vanrolleghem,et al.  Adaptive multiscale principal component analysis for on-line monitoring of a sequencing batch reactor. , 2005, Journal of biotechnology.

[34]  Mia Hubert,et al.  LIBRA: a MATLAB library for robust analysis , 2005 .

[35]  Jialin Liu,et al.  Process Monitoring Using Bayesian Classification on PCA Subspace , 2004 .

[36]  ChangKyoo Yoo,et al.  Statistical process monitoring with independent component analysis , 2004 .

[37]  B. Kulkarni,et al.  Modeling and monitoring of batch processes using principal component analysis (PCA) assisted generalized regression neural networks (GRNN) , 2004 .

[38]  ChangKyoo Yoo,et al.  On-line monitoring of batch processes using multiway independent component analysis , 2004 .

[39]  In-Beum Lee,et al.  Enhanced process monitoring of fed-batch penicillin cultivation using time-varying and multivariate statistical analysis. , 2004, Journal of biotechnology.

[40]  C. Yoo,et al.  Nonlinear process monitoring using kernel principal component analysis , 2004 .

[41]  Rajagopalan Srinivasan,et al.  Monitoring transitions in chemical plants using enhanced trend analysis , 2003, Comput. Chem. Eng..

[42]  Leo H. Chiang,et al.  Exploring process data with the use of robust outlier detection algorithms , 2003 .

[43]  Manabu Kano,et al.  Monitoring independent components for fault detection , 2003 .

[44]  Bhavik R. Bakshi,et al.  Multiscale SPC using wavelets: Theoretical analysis and properties , 2003 .

[45]  Ali Cinar,et al.  Statistical monitoring of multistage, multiphase batch processes , 2002 .

[46]  Ronald K. Pearson,et al.  Outliers in process modeling and identification , 2002, IEEE Trans. Control. Syst. Technol..

[47]  A. Ferrer,et al.  Dealing with missing data in MSPC: several methods, different interpretations, some examples , 2002 .

[48]  A. J. Morris,et al.  Statistical performance monitoring of dynamic multivariate processes using state space modelling , 2002 .

[49]  J. Schafer,et al.  Missing data: our view of the state of the art. , 2002, Psychological methods.

[50]  S. Joe Qin,et al.  Consistent dynamic PCA based on errors-in-variables subspace identification , 2001 .

[51]  Michael J. Piovoso,et al.  On unifying multiblock analysis with application to decentralized process monitoring , 2001 .

[52]  Richard D. Braatz,et al.  Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis , 2000 .

[53]  Gunnar Rätsch,et al.  Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.

[54]  Weihua Li,et al.  Recursive PCA for adaptive process monitoring , 1999 .

[55]  Junghui Chen,et al.  Mixture Principal Component Analysis Models for Process Monitoring , 1999 .

[56]  Svante Wold,et al.  Modelling and diagnostics of batch processes and analogous kinetic experiments , 1998 .

[57]  John F. MacGregor,et al.  Adaptive batch monitoring using hierarchical PCA , 1998 .

[58]  B. Bakshi Multiscale PCA with application to multivariate statistical process monitoring , 1998 .

[59]  Chonghun Han,et al.  Real-time monitoring for a process with multiple operating modes , 1998 .

[60]  A. Negiz,et al.  Statistical monitoring of multivariable dynamic processes with state-space models , 1997 .

[61]  John F. MacGregor,et al.  Multi-way partial least squares in monitoring batch processes , 1995 .

[62]  Christos Georgakis,et al.  Disturbance detection and isolation by dynamic principal component analysis , 1995 .

[63]  Dong Dong,et al.  Nonlinear principal component analysis-based on principal curves and neural networks , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[64]  Mark A. Kramer,et al.  Autoassociative neural networks , 1992 .

[65]  Agnar Höskuldsson,et al.  Multi‐block methods in multivariate process control , 2008 .