Virus-Plus-Susceptibility Gene Interaction Determines Crohn's Disease Gene Atg16L1 Phenotypes in Intestine

[1]  K. Geboes Inflammatory Disorders of the Small Intestine , 2012 .

[2]  Sara E. Miller,et al.  Quantitation of selective autophagic protein aggregate degradation in vitro and in vivo using luciferase reporters , 2009, Autophagy.

[3]  N. Hacohen,et al.  A Physical and Regulatory Map of Host-Influenza Interactions Reveals Pathways in H1N1 Infection , 2009, Cell.

[4]  Dan R. Littman,et al.  Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria , 2009, Cell.

[5]  G. Weinstock,et al.  Enteric defensins are essential regulators of intestinal microbial ecology , 2009, Nature Immunology.

[6]  A. Ouellette,et al.  Alpha-defensins in enteric innate immunity: functional Paneth cell alpha-defensins in mouse colonic lumen. , 2009, The Journal of biological chemistry.

[7]  K. Hasenkrug,et al.  Effects of Acute and Chronic Murine Norovirus Infections on Immune Responses and Recovery from Friend Retrovirus Infection , 2009, Journal of Virology.

[8]  A. Hill,et al.  Investigation of the impact of the common animal facility contaminant murine norovirus on experimental murine cytomegalovirus infection. , 2009, Virology.

[9]  F. Powrie,et al.  Regulatory T cells reinforce intestinal homeostasis. , 2009, Immunity.

[10]  K. Gradel,et al.  Increased short- and long-term risk of inflammatory bowel disease after salmonella or campylobacter gastroenteritis. , 2009, Gastroenterology.

[11]  Kaoru Tominaga,et al.  Activation of innate immune antiviral response by NOD2 , 2009, Nature Immunology.

[12]  E. Wherry,et al.  Redefining Chronic Viral Infection , 2009, Cell.

[13]  H. Jessen,et al.  IL-10 is up-regulated in multiple cell types during viremic HIV infection and reversibly inhibits virus-specific T cells. , 2009, Blood.

[14]  R. Sartor,et al.  Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial killing in inflammatory bowel diseases , 2009, Current opinion in infectious diseases.

[15]  B. Levine,et al.  Autophagy genes in immunity , 2009, Nature Immunology.

[16]  J. Yewdell,et al.  Murine Norovirus Infection Has No Significant Effect on Adaptive Immunity to Vaccinia Virus or Influenza A Virus , 2009, Journal of Virology.

[17]  K. Pritchett-Corning,et al.  Contemporary prevalence of infectious agents in laboratory mice and rats , 2009, Laboratory animals.

[18]  T. Itoh,et al.  Molecular detection of murine norovirus from experimentally and spontaneously infected mice. , 2009, Experimental animals.

[19]  A. Iwasaki,et al.  Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling , 2009, Proceedings of the National Academy of Sciences.

[20]  M. Komatsu,et al.  A common role for Atg16L1, Atg5, and Atg7 in small intestinal Paneth cells and Crohn disease , 2009, Autophagy.

[21]  Yoshihiro Kawaoka,et al.  A critical role for the sphingosine analog AAL-R in dampening the cytokine response during influenza virus infection , 2009, Proceedings of the National Academy of Sciences.

[22]  L. Eckmann,et al.  Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface , 2008, Proceedings of the National Academy of Sciences.

[23]  R. Baric,et al.  Immune Mechanisms Responsible for Vaccination against and Clearance of Mucosal and Lymphatic Norovirus Infection , 2008, PLoS pathogens.

[24]  P. Treuting,et al.  Murine norovirus: an intercurrent variable in a mouse model of bacteria-induced inflammatory bowel disease. , 2008, Comparative medicine.

[25]  Sarah L. Brown,et al.  A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells , 2008, Nature.

[26]  M. Daly,et al.  Genetic Mapping in Human Disease , 2008, Science.

[27]  J. Satsangi Faculty Opinions recommendation of Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. , 2008 .

[28]  Doktorgrades Der Naturwissenschaften,et al.  Autophagy in Thymic Epithelium Shapes the T cell Repertoire and is Essential for Tolerance , 2009 .

[29]  D. Tribble,et al.  Infectious gastroenteritis and risk of developing inflammatory bowel disease. , 2008, Gastroenterology.

[30]  Judy H. Cho,et al.  Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease , 2008, Nature Genetics.

[31]  Zhiyong Xi,et al.  The Aedes aegypti Toll Pathway Controls Dengue Virus Infection , 2008, PLoS pathogens.

[32]  R. Flavell,et al.  An Antibiotic-Responsive Mouse Model of Fulminant Ulcerative Colitis , 2008, PLoS medicine.

[33]  J. Rioux,et al.  ATG16L1 and IL23R Are Associated With Inflammatory Bowel Diseases but Not With Celiac Disease in The Netherlands , 2008, The American Journal of Gastroenterology.

[34]  D. Day,et al.  Inflammatory Disorders of the Small Intestine , 2008 .

[35]  James A. Hutchinson,et al.  Macrophages Driven to a Novel State of Activation Have Anti-Inflammatory Properties in Mice1 , 2008, The Journal of Immunology.

[36]  A. Miyawaki,et al.  The Atg5–Atg12 conjugate associates with innate antiviral immune responses , 2007, Proceedings of the National Academy of Sciences.

[37]  Larissa B. Thackray,et al.  Murine Noroviruses Comprising a Single Genogroup Exhibit Biological Diversity despite Limited Sequence Divergence , 2007, Journal of Virology.

[38]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[39]  Judy H Cho,et al.  Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis , 2007, Nature Genetics.

[40]  Thomas Lengauer,et al.  A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1 , 2007, Nature Genetics.

[41]  You-Wen He,et al.  A critical role for the autophagy gene Atg5 in T cell survival and proliferation , 2007, The Journal of experimental medicine.

[42]  H. Changotra,et al.  Murine Norovirus 1 Infection Is Associated with Histopathological Changes in Immunocompetent Hosts, but Clinical Disease Is Prevented by STAT1-Dependent Interferon Responses , 2007, Journal of Virology.

[43]  J. Brenchley,et al.  Microbial translocation is a cause of systemic immune activation in chronic HIV infection , 2006, Retrovirology.

[44]  Nan Guo,et al.  PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways , 2006, Nucleic Acids Res..

[45]  J. McCullers Insights into the Interaction between Influenza Virus and Pneumococcus , 2006, Clinical Microbiology Reviews.

[46]  J. Panés,et al.  Acute gastroenteritis is followed by an increased risk of inflammatory bowel disease. , 2006, Gastroenterology.

[47]  C. Wobus,et al.  Development of a Microsphere-Based Serologic Multiplexed Fluorescent Immunoassay and a Reverse Transcriptase PCR Assay To Detect Murine Norovirus 1 Infection in Mice , 2005, Clinical Diagnostic Laboratory Immunology.

[48]  Rafael A. Irizarry,et al.  Bioinformatics and Computational Biology Solutions using R and Bioconductor , 2005 .

[49]  Jason M Doherty,et al.  Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Robert Gentleman,et al.  Analyzing factorial designed microarray experiments , 2004 .

[51]  J. Goldblum,et al.  Surgical Pathology of the GI Tract, Liver, Biliary Tract, and Pancreas , 2003 .

[52]  R. Chetty,et al.  Morson and Dawson’s Gastrointestinal Pathology , 2003 .

[53]  C. Wobus,et al.  STAT1-Dependent Innate Immunity to a Norwalk-Like Virus , 2003, Science.

[54]  Jason C Mills,et al.  Molecular features of adult mouse small intestinal epithelial progenitors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[55]  S. Dudoit,et al.  Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. , 2002, Nucleic acids research.

[56]  T. Ganz,et al.  The multifaceted Paneth cell , 2002, Cellular and Molecular Life Sciences CMLS.

[57]  C. Hedberg,et al.  Food-related illness and death in the United States. , 1999, Emerging infectious diseases.

[58]  Y. Donati,et al.  TNF-induced enterocyte apoptosis and detachment in mice: induction of caspases and prevention by a caspase inhibitor, ZVAD-fmk. , 1999, Laboratory investigation; a journal of technical methods and pathology.

[59]  S. Targan,et al.  A Short-Term Study of Chimeric Monoclonal Antibody cA2 to Tumor Necrosis Factor α for Crohn's Disease , 1997 .

[60]  R. Sartor The influence of normal microbial flora on the development of chronic mucosal inflammation. , 1997, Research in immunology.

[61]  M. Neurath,et al.  Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. , 1996, Journal of immunology.

[62]  D. Riches,et al.  Functional switching of macrophage responses to tumor necrosis factor-alpha (TNF alpha) by interferons. Implications for the pleiotropic activities of TNF alpha. , 1994, The Journal of clinical investigation.

[63]  L. Hood,et al.  Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity , 1993, Cell.

[64]  M. Capobianchi,et al.  Spontaneous release of interferon gamma by intestinal lamina propria lymphocytes in Crohn's disease. Kinetics of in vitro response to interferon gamma inducers. , 1991, Gut.

[65]  R. Schreiber,et al.  Generation and characterization of hamster monoclonal antibodies that neutralize murine tumor necrosis factors. , 1989, Journal of immunology.

[66]  T. Dyrberg,et al.  Inhibition of diabetes in BB rats by virus infection. , 1988, The Journal of clinical investigation.

[67]  M. Oldstone Prevention of type I diabetes in nonobese diabetic mice by virus infection. , 1988, Science.

[68]  R. Schreiber,et al.  Monoclonal antibodies to murine gamma-interferon which differentially modulate macrophage activation and antiviral activity. , 1985, Journal of immunology.

[69]  T. Thornhill,et al.  Viral gastroenteritis induced by the Hawaii agent. Jejunal histopathology and serologic response. , 1975, The American journal of medicine.

[70]  R. Northrup,et al.  Acute infectious nonbacterial gastroenteritis: intestinal histopathology. Histologic and enzymatic alterations during illness produced by the Norwalk agent in man. , 1973 .

[71]  M. Oldstone,et al.  THE EFFECT OF INDUCED CHRONIC VIRAL INFECTIONS ON THE IMMUNOLOGIC DISEASES OF NEW ZEALAND MICE , 1970, The Journal of experimental medicine.

[72]  K. Mossman The Wellcome Trust Case Control Consortium, U.K. , 2008 .

[73]  A. Ouellette Paneth cell alpha-defensin synthesis and function. , 2006, Current topics in microbiology and immunology.

[74]  N. Chand,et al.  Celiac disease: current concepts in diagnosis and treatment. , 2006, Journal of clinical gastroenterology.

[75]  A. Ouellette Paneth cell α-defensin synthesis and function , 2006 .

[76]  Gordon K. Smyth,et al.  limma: Linear Models for Microarray Data , 2005 .

[77]  S. Targan,et al.  A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn's disease. Crohn's Disease cA2 Study Group. , 1997, The New England journal of medicine.

[78]  D. Day,et al.  Morson & Dawson's Gastrointestinal Pathology , 1990 .