Cardiac dynamics: a simplified model for action potential propagation

[1]  Angelina Peñaranda,et al.  Cardiac dynamics: a simplified model for action potential propagation , 2012, Theoretical Biology and Medical Modelling.

[2]  Henggui Zhang,et al.  Postnatal development of transmural gradients in expression of ion channels and Ca²⁺-handling proteins in the ventricle. , 2012, Journal of molecular and cellular cardiology.

[3]  Jean-Frédéric Gerbeau,et al.  Numerical simulations of electrocardiograms , 2011 .

[4]  A. Peñaranda,et al.  Slow pulse due to calcium current induces phase-2 reentry in heterogeneous tissue , 2010, 2010 Computing in Cardiology.

[5]  Angelina Peñaranda,et al.  Phase-2 reentry in cardiac tissue: role of the slow calcium pulse. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  D. Bers,et al.  A novel computational model of the human ventricular action potential and Ca transient. , 2010, Journal of Molecular and Cellular Cardiology.

[7]  J. Brugada,et al.  Reexcitation mechanisms in epicardial tissue: role of I(to) density heterogeneities and I(Na) inactivation kinetics. , 2009, Journal of theoretical biology.

[8]  T. K. Shajahan,et al.  Spiral-Wave Turbulence and Its Control in the Presence of Inhomogeneities in Four Mathematical Models of Cardiac Tissue , 2009, PloS one.

[9]  D Gavaghan,et al.  Grid computing simulations of ion channel block effects on the ECG using 3D anatomically-based models , 2009, 2009 36th Annual Computers in Cardiology Conference (CinC).

[10]  Elizabeth Cherry,et al.  Models of cardiac cell , 2008, Scholarpedia.

[11]  F. Fenton,et al.  Minimal model for human ventricular action potentials in tissue. , 2008, Journal of theoretical biology.

[12]  Elizabeth M Cherry,et al.  Pulmonary vein reentry--properties and size matter: insights from a computational analysis. , 2007, Heart rhythm.

[13]  Jonathan C. Newton,et al.  The Transmural Activation Sequence in Porcine and Canine Left Ventricle Is Markedly Different During Long‐Duration Ventricular Fibrillation , 2007, Journal of cardiovascular electrophysiology.

[14]  Charles Antzelevitch,et al.  Role of spatial dispersion of repolarization in inherited and acquired sudden cardiac death syndromes. , 2007, American journal of physiology. Heart and circulatory physiology.

[15]  A. Yue,et al.  Global endocardial electrical restitution in human right and left ventricles determined by noncontact mapping. , 2005, Journal of the American College of Cardiology.

[16]  R. Winslow,et al.  A computational model of the human left-ventricular epicardial myocyte. , 2004, Biophysical journal.

[17]  Elizabeth M Cherry,et al.  Suppression of alternans and conduction blocks despite steep APD restitution: electrotonic, memory, and conduction velocity restitution effects. , 2004, American journal of physiology. Heart and circulatory physiology.

[18]  D. Noble,et al.  A model for human ventricular tissue. , 2004, American journal of physiology. Heart and circulatory physiology.

[19]  Natalia A. Trayanova,et al.  Advances in Modeling Cardiac Defibrillation , 2003, Int. J. Bifurc. Chaos.

[20]  D. Schaeffer,et al.  A two-current model for the dynamics of cardiac membrane , 2003, Bulletin of mathematical biology.

[21]  James P. Keener,et al.  Stability conditions for the traveling pulse: Modifying the restitution hypothesis. , 2002, Chaos.

[22]  R Wilders,et al.  A computationally efficient electrophysiological model of human ventricular cells. , 2002, American journal of physiology. Heart and circulatory physiology.

[23]  F. Fenton,et al.  Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. , 2002, Chaos.

[24]  Colleen E. Clancy,et al.  Na+ Channel Mutation That Causes Both Brugada and Long-QT Syndrome Phenotypes: A Simulation Study of Mechanism , 2002, Circulation.

[25]  J L Puglisi,et al.  LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport. , 2001, American journal of physiology. Cell physiology.

[26]  W. Giles,et al.  A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. , 2001, Biophysical journal.

[27]  S. F. Mironov,et al.  Visualizing excitation waves inside cardiac muscle using transillumination. , 2001, Biophysical journal.

[28]  Y Rudy,et al.  Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. , 2000, Biophysical journal.

[29]  R. Winslow,et al.  Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. , 1999, Circulation research.

[30]  F. Fenton,et al.  Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. , 1998, Chaos.

[31]  M. Carrier,et al.  Transmural heterogeneity of action potentials and Ito1 in myocytes isolated from the human right ventricle. , 1998, The American journal of physiology.

[32]  D. Beuckelmann,et al.  Simulation study of cellular electric properties in heart failure. , 1998, Circulation research.

[33]  A. McCulloch,et al.  Three-dimensional analysis of regional cardiac function: a model of rabbit ventricular anatomy. , 1998, Progress in biophysics and molecular biology.

[34]  R. Aliev,et al.  A simple two-variable model of cardiac excitation , 1996 .

[35]  F. Charpentier,et al.  Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: evidence for presence of M cells. , 1995, Journal of the American College of Cardiology.

[36]  C. Luo,et al.  A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. , 1994, Circulation research.

[37]  J. Brugada,et al.  Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. , 1992, Journal of the American College of Cardiology.

[38]  E. Rowland,et al.  Dispersion of monophasic action potential duration: demonstrable in humans after premature ventricular extrastimulation but not in steady state. , 1992, Journal of the American College of Cardiology.

[39]  W. Baxter,et al.  Stationary and drifting spiral waves of excitation in isolated cardiac muscle , 1992, Nature.

[40]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990, Bulletin of mathematical biology.

[41]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[42]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[43]  A. Jervell,et al.  CONGENITAL DEAF‐MUTISM, FUNCTIONAL HEART DISEASE WITH PROLONGATION OF THE Q‐T INTERVAL, AND SUDDEN DEATH , 1999, American heart journal.

[44]  J. Ulrich [Physiology of the heart]. , 1950, Zeitschrift fur Kreislaufforschung.