A Nearly Optimal Algorithm for Deciding Connectivity Queries in Smooth and Bounded Real Algebraic Sets

A roadmap for a semi-algebraic set S is a curve which has a non-empty and connected intersection with all connected components of S. Hence, this kind of object, introduced by Canny, can be used to answer connectivity queries (with applications, for instance, to motion planning) but has also become of central importance in effective real algebraic geometry, since it is used in higher-level algorithms. In this article, we provide a probabilistic algorithm which computes roadmaps for smooth and bounded real algebraic sets. Its output size and running time are polynomial in (nD)nlog (d), where D is the maximum of the degrees of the input polynomials, d is the dimension of the set under consideration and n is the number of variables. More precisely, the running time of the algorithm is essentially subquadratic in the output size. Even under our assumptions, it is the first roadmap algorithm with output size and running time polynomial in (nD)nlog (d).

[1]  Giovanni Manzini,et al.  Inversion of two level circulant matrices over Zp , 2003 .

[2]  Marie-Françoise Roy,et al.  Divide and Conquer Roadmap for Algebraic Sets , 2014, Discret. Comput. Geom..

[3]  J. Eagon,et al.  Ideals defined by matrices and a certain complex associated with them , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  Marc Giusti,et al.  Polar Varieties, Real Equation Solving, and Data Structures: The Hypersurface Case , 1997, J. Complex..

[5]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[6]  Éric Schost,et al.  On the complexity of computing with zero-dimensional triangular sets , 2011, J. Symb. Comput..

[7]  Éric Schost,et al.  On the geometry of polar varieties , 2009, Applicable Algebra in Engineering, Communication and Computing.

[8]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[9]  Marc Giusti,et al.  Generalized polar varieties: geometry and algorithms , 2005, J. Complex..

[10]  D. Mumford Algebraic Geometry I: Complex Projective Varieties , 1981 .

[11]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[12]  E. Davison,et al.  The numerical solution of A'Q+QA =-C , 1968 .

[13]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[14]  B. Bank,et al.  Polar varieties and efficient real elimination , 2000 .

[15]  I. Shafarevich Basic algebraic geometry , 1974 .

[16]  Marc Giusti,et al.  Le rôle des structures de données dans les problèmes d'élimination , 1997 .

[17]  Éric Schost,et al.  Change of order for bivariate triangular sets , 2006, ISSAC '06.

[18]  Palaiseau Cedex,et al.  Computing Parametric Geometric Resolutions , 2001 .

[19]  Martin Kreuzer,et al.  Computational Commutative Algebra 1 , 2000 .

[20]  Éric Schost,et al.  A Baby Steps/Giant Steps Probabilistic Algorithm for Computing Roadmaps in Smooth Bounded Real Hypersurface , 2011, Discret. Comput. Geom..

[21]  Éric Schost,et al.  Polar varieties and computation of one point in each connected component of a smooth real algebraic set , 2003, ISSAC '03.

[22]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[23]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[24]  Fabrice Rouillier,et al.  Real Solving for Positive Dimensional Systems , 2002, J. Symb. Comput..

[25]  Fabrice Rouillier,et al.  Finding at Least One Point in Each Connected Component of a Real Algebraic Set Defined by a Single Equation , 2000, J. Complex..

[26]  Patrizia M. Gianni,et al.  Algebraic Solution of Systems of Polynomial Equations Using Groebner Bases , 1987, AAECC.

[27]  L. Kronecker Grundzüge einer arithmetischen Theorie der algebraische Grössen. , 2022 .

[28]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[29]  Grégoire Lecerf Computing an equidimensional decomposition of an algebraic variety by means of geometric resolutions , 2000, ISSAC.

[30]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[31]  Marc Giusti,et al.  Intrinsic complexity estimates in polynomial optimization , 2013, J. Complex..

[32]  Xin Jin,et al.  Change of order for regular chains in positive dimension , 2008, Theor. Comput. Sci..

[33]  Joos Heintz,et al.  Testing polynomials which are easy to compute (Extended Abstract) , 1980, STOC '80.

[34]  John F. Canny,et al.  Computing Roadmaps of General Semi-Algebraic Sets , 1991, Comput. J..

[35]  A. Morgan,et al.  A homotopy for solving general polynomial systems that respects m-homogeneous structures , 1987 .

[36]  Mohab Safey El Din,et al.  Probabilistic Algorithm for Polynomial Optimization over a Real Algebraic Set , 2013, SIAM J. Optim..

[37]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[38]  J. E. Morais,et al.  When Polynomial Equation Systems Can Be "Solved" Fast? , 1995, AAECC.

[39]  S. Basu,et al.  COMPUTING ROADMAPS OF SEMI-ALGEBRAIC SETS ON A VARIETY , 1999 .

[40]  B. Bank,et al.  Polar Varieties and Efficient Real Equation Solving: The Hypersurface Case , 1996 .

[41]  Stéphan Thomassé,et al.  On the complexity of partial derivatives , 2016, STACS.

[42]  Marie-Françoise Roy,et al.  Zeros, multiplicities, and idempotents for zero-dimensional systems , 1996 .

[43]  Laurent Gournay,et al.  Construction of roadmaps in semi-algebraic sets , 1993, Applicable Algebra in Engineering, Communication and Computing.

[44]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[45]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[46]  L. Kronecker Grundzüge einer arithmetischen Theorie der algebraischen Grössen. (Abdruck einer Festschrift zu Herrn E. E. Kummers Doctor-Jubiläum, 10. September 1881.). , 2022 .

[47]  J. E. Morais,et al.  Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.

[48]  Marie-Françoise Roy,et al.  Computing roadmaps of semi-algebraic sets (extended abstract) , 1996, STOC '96.

[49]  DinMohab Safey El,et al.  A Nearly Optimal Algorithm for Deciding Connectivity Queries in Smooth and Bounded Real Algebraic Sets , 2017 .

[50]  Grégoire Lecerf,et al.  A concise proof of the Kronecker polynomial system solver from scratch , 2008 .

[51]  F. S. Macaulay,et al.  The Algebraic Theory of Modular Systems , 1972 .

[52]  Joos Heintz,et al.  Single Exponential Path Finding in Semi-algebraic Sets, Part II: The General Case , 1994 .

[53]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[54]  Ragni Piene,et al.  Polar classes of singular varieties , 1978 .

[55]  Dominique Duval,et al.  About a New Method for Computing in Algebraic Number Fields , 1985, European Conference on Computer Algebra.

[56]  Marc Giusti,et al.  A G ] 1 6 D ec 2 01 3 Degeneracy loci and polynomial equation solving 1 , 2014 .

[57]  S. Basu,et al.  Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics) , 2006 .

[58]  Fabrice Rouillier,et al.  Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.

[59]  Éric Schost,et al.  A Baby Step–Giant Step Roadmap Algorithm for General Algebraic Sets , 2012, Found. Comput. Math..

[60]  Marc Moreno Maza,et al.  On the complexity of the D5 principle , 2005, SIGS.

[61]  Craig Huneke,et al.  Commutative Algebra I , 2012 .