Copper-free click chemistry for the in situ crosslinking of photodegradable star polymers.

Bifunctional, fluorinated cyclooctynes were used for the in situ "click" crosslinking of azide-terminated photodegradable star polymers, yielding photodegradable polymeric model networks with well-defined structures and tunable gelation times.

[1]  Craig J. Hawker,et al.  The Convergence of Synthetic Organic and Polymer Chemistries , 2005, Science.

[2]  C. Tanford Macromolecules , 1994, Nature.

[3]  K. Matyjaszewski,et al.  Atom transfer radical polymerization. , 2001, Chemical reviews.

[4]  K. Matyjaszewski,et al.  CLICK FUNCTIONALIZATION OF WELL-DEFINED (CO)POLYMERS PREPARED BY ATOM TRANSFER RADICAL POLYMERIZATION , 2005 .

[5]  J. Kopeček,et al.  Hydrogels as smart biomaterials , 2007 .

[6]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[7]  Jean-François Lutz,et al.  1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. , 2007, Angewandte Chemie.

[8]  Carolyn R. Bertozzi,et al.  Copper-free click chemistry for dynamic in vivo imaging , 2007, Proceedings of the National Academy of Sciences.

[9]  Jeremiah A. Johnson,et al.  Synthesis of degradable model networks via ATRP and click chemistry. , 2006, Journal of the American Chemical Society.

[10]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[11]  Jennifer A. Prescher,et al.  A comparative study of bioorthogonal reactions with azides. , 2006, ACS chemical biology.

[12]  E. Smela,et al.  Microfabricating conjugated polymer actuators. , 2000, Science.

[13]  K. Anseth,et al.  Hydrogel Cell Cultures , 2007, Science.

[14]  A. Metters,et al.  Hydrogels in controlled release formulations: network design and mathematical modeling. , 2006, Advanced drug delivery reviews.

[15]  Jennifer A. Prescher,et al.  Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids , 2006, Proceedings of the National Academy of Sciences.

[16]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[17]  J. Hedrick,et al.  Synthesis of well-defined hydrogel networks using click chemistry. , 2006, Chemical communications.

[18]  Nathan Blow,et al.  Microfluidics: in search of a killer application , 2007, Nature Methods.

[19]  T. Krasia‐Christoforou,et al.  Amphiphilic Model Conetworks Based on Combinations of Methacrylate, Acrylate, and Styrenic Units: Synthesis by RAFT Radical Polymerization and Characterization of the Swelling Behavior , 2007 .

[20]  Dongmei Cui,et al.  Supplementary Material (ESI) for Chemical Communications , 2009 .

[21]  Jennifer A. Prescher,et al.  Chemistry in living systems , 2005, Nature chemical biology.

[22]  Jennifer A. Prescher,et al.  A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. , 2004, Journal of the American Chemical Society.

[23]  M. G. Finn,et al.  Synthesis of Photocleavable Linear Macromonomers by ATRP and Star Macromonomers by a Tandem ATRP-Click Reaction: Precursors to Photodegradable Model Networks , 2007 .

[24]  G. Gerlach,et al.  Chemical sensors based on multiresponsive block copolymer hydrogels , 2007 .

[25]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .