Integración de modelos de agrupamiento y reglas de asociación obtenidos de múltiples fuentes de datos
暂无分享,去创建一个
[1] V. Saravanan. Knowledge integration in a Parallel and distributed environment with association rule mining using XML data. , 2008 .
[2] Ian H. Witten,et al. Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.
[3] Alejandro Rosete,et al. Integrating Data Mining Models from Distributed Data Sources , 2010, DCAI.
[4] Carla E. Brodley,et al. Solving cluster ensemble problems by bipartite graph partitioning , 2004, ICML.
[5] Ramakrishnan Srikant,et al. Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.
[6] David E. Goldberg,et al. Genetic Algorithm Difficulty and the Modality of Fitness Landscapes , 1994, FOGA.
[7] Xindong Wu,et al. Synthesizing High-Frequency Rules from Different Data Sources , 2003, IEEE Trans. Knowl. Data Eng..
[8] Philip S. Yu,et al. Combining multiple clusterings by soft correspondence , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).
[9] Lawrence O. Hall,et al. A scalable framework for cluster ensembles , 2009, Pattern Recognit..
[10] Ian H. Witten,et al. WEKA: a machine learning workbench , 1994, Proceedings of ANZIIS '94 - Australian New Zealnd Intelligent Information Systems Conference.
[11] Joydeep Ghosh,et al. Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..
[12] Deniz Yuret,et al. Dynamic Hill Climbing: Overcoming the limitations of optimization techniques , 1993 .
[13] Nandit Soparkar,et al. Frequent Itemset Counting Across Multiple Tables , 2000, PAKDD.
[14] Ian H. Witten,et al. Data mining - practical machine learning tools and techniques, Second Edition , 2005, The Morgan Kaufmann series in data management systems.