A fast multiscale solver for modified Hammerstein equations

Abstract This paper presents a fast solver, called the multilevel augmentation method, for modified nonlinear Hammerstein equations. When we utilize the method to solve a large scale problem, most of components of the solution can be computed directly, and lower frequency components can be obtained by solving a fixed low-order algebraic nonlinear system. The advantage of using the algorithm to modified equations is that it leads to reduce the cost of numerical integrations greatly. The optimal error estimate of the method is established and the nearly linear computational complexity is proved. Finally, numerical examples are presented to confirm the theoretical results and illustrate the efficiency of the method.

[1]  B. Alpert A class of bases in L 2 for the sparse representations of integral operators , 1993 .

[2]  Hideaki Kaneko,et al.  Superconvergence of the iterated Galerkin methods for Hammerstein equations , 1996 .

[3]  Zhongying Chen,et al.  The Petrov--Galerkin and Iterated Petrov--Galerkin Methods for Second-Kind Integral Equations , 1998 .

[4]  Kendall E. Atkinson,et al.  Projection and iterated projection methods for nonliear integral equations , 1987 .

[5]  Sunil Kumar,et al.  A discrete collocation-type method for Hammerstein equations , 1988 .

[6]  Yuesheng Xu,et al.  Fast Collocation Methods for Second Kind Integral Equations , 2002, SIAM J. Numer. Anal..

[7]  Bin Wu,et al.  Fast numerical collocation solutions of integral equations , 2007 .

[8]  Fuyi Li,et al.  Existence of solutions to nonlinear Hammerstein integral equations and applications , 2006 .

[9]  Hideaki Kaneko,et al.  Wavelet applications to the Petrov--Galerkin method for Hammerstein equations , 2003 .

[10]  Gennadi Vainikko Nonlinear integral equation , 1993 .

[11]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[12]  Yuesheng Xu,et al.  Fast Multilevel Augmentation Methods for Solving Hammerstein Equations , 2009, SIAM J. Numer. Anal..

[13]  Han Guo-qiang,et al.  Extrapolation of Nystrom solution for two dimensional nonlinear Fredholm integral equations , 2001 .

[14]  Yuesheng Xu,et al.  A construction of interpolating wavelets on invariant sets , 1999, Math. Comput..

[15]  Wolfgang Dahmen,et al.  Nonlinear functionals of wavelet expansions – adaptive reconstruction and fast evaluation , 2000, Numerische Mathematik.

[16]  M. J. Rubio,et al.  Secant-like methods for solving nonlinear integral equations of the Hammerstein type , 2000 .

[17]  Charles A. Micchelli,et al.  Wavelet Galerkin methods for second-kind integral equations , 1997 .

[18]  Hideaki Kaneko,et al.  Superconvergence of the iterated collocation methods for Hammerstein equations , 1997 .

[19]  Ian H. Sloan,et al.  A new collocation-type method for Hammerstein integral equations , 1987 .

[20]  Sunil Kumar,et al.  Superconvergence of a collocation-type method for simple turning points of Hammerstein equations , 1988 .

[21]  Wolfgang Dahmen,et al.  Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast solution , 1993, Adv. Comput. Math..

[22]  Kendall E. Atkinson,et al.  The discrete collocation method for nonlinear integral equations , 1993 .

[23]  Kendall E. Atkinson,et al.  A Survey of Numerical Methods for Solving Nonlinear Integral Equations , 1992 .

[24]  Yuesheng Xu,et al.  A multilevel augmentation method for solving ill-posed operator equations , 2006 .

[25]  Sunil Kumar Superconvergence of a Collocation-type Method for Hummerstein Equations , 1987 .

[26]  K. Atkinson,et al.  Theoretical Numerical Analysis: A Functional Analysis Framework , 2001 .

[27]  Yuesheng Xu,et al.  The Petrov–Galerkin method for second kind integral equations II: multiwavelet schemes , 1997, Adv. Comput. Math..

[28]  Yuesheng Xu,et al.  Discrete Wavelet Petrov–Galerkin Methods , 2002, Adv. Comput. Math..

[29]  Hideaki Kaneko,et al.  Regularity of the solution of Hammerstein equations with weakly singular kernel , 1990 .

[30]  Charles A. Micchelli,et al.  A Multilevel Method for Solving Operator Equations , 2001 .

[31]  Hideaki Kaneko,et al.  Degenerate kernel method for Hammerstein equations , 1991 .

[32]  Hideaki Kaneko,et al.  Numerical Solutions for Weakly Singular Hammerstein Equations and their Superconvergence , 1992 .

[33]  G. Han,et al.  Extrapolation of a discrete collocation-type method of Hammerstein equations , 1995 .

[34]  Guanrong Chen,et al.  Approximate Solutions of Operator Equations , 1997 .

[35]  陈仲英,et al.  MULTILEVEL AUGMENTATION METHODS FOR SOLVING OPERATOR EQUATIONS , 2005 .

[36]  C. Micchelli,et al.  Using the Matrix Refinement Equation for the Construction of Wavelets on Invariant Sets , 1994 .