Experimental investigation of nonlinear spiral phase plates

We experimentally investigate a novel type of diffractive optical element – a nonlinear spiral phase plate. In contrast to the conventional spiral phase plates, the transmission function of the new element is described as exp(imφn ). The intensity distributions generated by these elements have a spiral shape with an intensity gradient. The phase distribution of the generated light fields is also spiral shaped. We believe that the proposed diffractive element will be useful in the area of laser manipulation and laser–matter interaction.

[1]  G. V. Uspleniev,et al.  The Phase Rotor Filter , 1992 .

[2]  Marco W. Beijersbergen,et al.  Helical-wavefront laser beams produced with a spiral phaseplate , 1994 .

[3]  M J Padgett,et al.  Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. , 1997, Optics letters.

[4]  S. Cabrini,et al.  Laser trapping and micro-manipulation using optical vortices , 2004, Digest of Papers. 2004 International Microprocesses and Nanotechnology Conference, 2004..

[5]  A. A. Almazov,et al.  Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  J. Lin,et al.  High-power efficient multiple optical vortices in a single beam generated by a kinoform-type spiral phase plate. , 2006, Applied optics.

[7]  Grover A Swartzlander,et al.  Achromatic optical vortex lens. , 2006, Optics letters.

[8]  Jari Turunen,et al.  Diffraction of conic and Gaussian beams by a spiral phase plate. , 2006, Applied optics.

[9]  S. Khonina,et al.  Diffraction of a plane, finite-radius wave by a spiral phase plate. , 2006, Optics letters.

[10]  Daomu Zhao,et al.  Optical vortices generated by multi-level achromatic spiral phase plates for broadband beams , 2008 .

[11]  Zhengping Hong,et al.  Optical sorting using an array of optical vortices with fractional topological charge , 2010 .

[12]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[13]  Ryuji Morita,et al.  Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures , 2012, Nano letters.

[14]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[15]  Carolina Rickenstorff-Parrao,et al.  Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator. , 2013, Optics letters.

[16]  Jianlin Zhao,et al.  Spiral autofocusing Airy beams carrying power-exponent-phase vortices. , 2014, Optics express.

[17]  A. Willner,et al.  Optical communications using orbital angular momentum beams , 2015 .

[18]  Vladimir S Lyubopytov,et al.  Wavelength-selective orbital-angular-momentum beam generation using MEMS tunable Fabry-Perot filter. , 2016, Optics letters.

[19]  Daomu Zhao,et al.  Propagation of the power-exponent-phase vortex beam in paraxial ABCD system. , 2016, Optics express.

[20]  Victor V. Kotlyar,et al.  A highly efficient element for generating elliptic perfect optical vortices , 2017 .

[21]  Feng Zhu,et al.  Nonlinear mixing of optical vortices with fractional topological charge in Raman sideband generation , 2017 .

[22]  Mark E Siemens,et al.  Angular Momentum of Topologically Structured Darkness. , 2017, Physical review letters.

[23]  S. Khonina,et al.  Zero-orbital-angular-momentum laser printing of chiral nanoneedles. , 2017, Optics letters.

[24]  Monika Ritsch-Marte,et al.  Orbital angular momentum light in microscopy , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  A. Porfirev,et al.  Non-ring perfect optical vortices with p-th order symmetry generated using composite diffractive optical elements , 2018, Applied Physics Letters.

[26]  José A Rodrigo,et al.  Dynamic morphing of 3D curved laser traps for all-optical manipulation of particles. , 2018, Optics express.

[27]  Kishan Dholakia,et al.  A New Twist for Materials Science: The Formation of Chiral Structures Using the Angular Momentum of Light , 2019, Advanced Optical Materials.

[28]  Yangjian Cai,et al.  Grafted optical vortex with controllable orbital angular momentum distribution. , 2019, Optics express.

[29]  Lu Yan,et al.  Vortex fibers for STED microscopy , 2019, APL Photonics.

[30]  Mali Gong,et al.  Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities , 2019, Light: Science & Applications.

[31]  Sergey Fomchenkov,et al.  Chirality of laser-printed plasmonic nanoneedles tunable by tailoring spiral-shape pulses , 2019, Applied Surface Science.