A comprehensive assessment of the low-temperature thermal properties and thermodynamic functions of CeO2.

Reported is an experimental and computational investigation of the low temperature heat capacity, thermodynamic functions, and thermal conductivity of stoichiometric, polycrystalline CeO2. The experimentally measured heat capacity at T < 15 K provides an important correction to the historically accepted experimental values, and the low temperature thermal conductivity serves as the most comprehensive data set at T < 400 K available. Below 10 K, the heat capacity is observed to obey the Debye T3 law, with a Debye temperature of ΘD = 455 K. The entropy, enthalpy, and Gibbs free energy functions are obtained from the experimental heat capacity and compared with predictions from Hubbard-corrected density functional perturbation theory calculations using the Perdew, Burke, and Ernzerhof parameterization revised for solids. The thermal conductivity is determined using the Maldonado continuous measurement technique, along with laser flash analysis, and analyzed according to the Klemens-Callaway model.

[1]  K. Mcclellan,et al.  Thermal and mechanical properties of CeO 2 , 2018, Journal of the American Ceramic Society.

[2]  M. V. Ganduglia-Pirovano,et al.  Raman Spectra of Polycrystalline CeO2: A Density Functional Theory Study , 2017 .

[3]  Eunja Kim,et al.  Density Functional Analysis of Fluorite-Structured (Ce, Zr)O2/CeO2 Interfaces , 2017 .

[4]  Eunja Kim,et al.  Assessing Hubbard-corrected AM05+U and PBEsol+U density functionals for strongly correlated oxides CeO2 and Ce2O3. , 2016, Physical chemistry chemical physics : PCCP.

[5]  C. Hess,et al.  Ceria and Its Defect Structure: New Insights from a Combined Spectroscopic Approach , 2016 .

[6]  Shuyan Song,et al.  CeO2-encapsulated noble metal nanocatalysts: enhanced activity and stability for catalytic application , 2015 .

[7]  E. Traversa,et al.  Catalytic Properties and Biomedical Applications of Cerium Oxide Nanoparticles. , 2015, Environmental science. Nano.

[8]  Xiang-Rong Chen,et al.  Study of the thermodynamic properties of CeO2 from ab initio calculations: the effect of phonon-phonon interaction. , 2015, The Journal of chemical physics.

[9]  Masato Kato,et al.  An Evaluation of the Thermophysical Properties of Stoichiometric CeO2 in Comparison to UO2 and PuO2 , 2014 .

[10]  G. Ji,et al.  First-Principles Investigations on Structural, Phonon, and Thermodynamic Properties of Cubic $$\text {CeO}_{2}$$CeO2 , 2014 .

[11]  J. L. Smith,et al.  Anisotropic thermal conductivity in uranium dioxide , 2014, Nature Communications.

[12]  S. Phillpot,et al.  Thermal Conductivity in Nanocrystalline Ceria Thin Films , 2014 .

[13]  Dario Manara,et al.  The Thermodynamic Properties of the f-Elements and their Compounds. Part 2. The Lanthanide and Actinide Oxides , 2014 .

[14]  A. Walsh,et al.  Dynamical response and instability in ceria under lattice expansion , 2013 .

[15]  C. Gopal,et al.  Ab initio thermodynamics of intrinsic oxygen vacancies in ceria , 2012, 1206.5429.

[16]  F. Fujishiro,et al.  The photoluminescence properties and reversible photoinduced spectral change of CeO2 bulk, film and nanocrystals , 2009 .

[17]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[18]  Byung‐Ho Lee,et al.  Applicability of CeO2 as a surrogate for PuO2 in a MOX fuel development , 2008 .

[19]  J. Hrbek,et al.  Activity of CeOx and TiOx Nanoparticles Grown on Au(111) in the Water-Gas Shift Reaction , 2007, Science.

[20]  Juarez L. F. Da Silva,et al.  Stability of the Ce2O3 phases : A DFT+U investigation , 2007 .

[21]  G. Scuseria,et al.  Generalized gradient approximation for solids and their surfaces , 2007, 0707.2088.

[22]  Georg Kresse,et al.  Hybrid functionals applied to rare-earth oxides: The example of ceria , 2007 .

[23]  Y. Yamamura,et al.  Thermal expansion and Debye temperature of rare earth-doped ceria , 2006 .

[24]  R. Krishnan,et al.  Heat capacity measurements on uranium–cerium mixed oxides by differential scanning calorimetry , 2006 .

[25]  Stefano de Gironcoli,et al.  Reply to “Comment on ‘Taming multiple valency with density functionals: A case study of defective ceria' ” , 2005 .

[26]  L. Gerward,et al.  Bulk modulus of CeO2 and PrO2—An experimental and theoretical study , 2005 .

[27]  M. Paranthaman,et al.  The RABiTS Approach: Using Rolling-Assisted Biaxially Textured Substrates for High-Performance YBCO Superconductors , 2004 .

[28]  P. Mohanan,et al.  Effect of Doping on the Dielectric Properties of Cerium Oxide in the Microwave and Far-Infrared Frequency Range , 2004 .

[29]  S. Logothetidis,et al.  Dielectric properties and electronic transitions of porous and nanostructured cerium oxide films , 2004 .

[30]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[31]  X. Verykios,et al.  Renewable Hydrogen from Ethanol by Autothermal Reforming , 2004, Science.

[32]  M. Flytzani-Stephanopoulos,et al.  Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts , 2003, Science.

[33]  J. L. Smith,et al.  Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system , 2003 .

[34]  Y. Hirata,et al.  Thermal expansion of rare-earth-doped ceria ceramics , 2002 .

[35]  E. Westrum,et al.  Revisiting the thermophysical properties of the A-type hexagonal lanthanide sesquioxides between temperatures of 5 K and 1000 K , 2002 .

[36]  M. Dresselhaus,et al.  Alternative energy technologies , 2001, Nature.

[37]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[38]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[39]  George S. Nolas,et al.  Effect of partial void filling on the lattice thermal conductivity of skutterudites , 1998 .

[40]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[43]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[44]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[45]  Nakajima,et al.  Defect-induced Raman spectra in doped CeO2. , 1994, Physical review. B, Condensed matter.

[46]  Weber,et al.  Raman study of CeO2: Second-order scattering, lattice dynamics, and particle-size effects. , 1993, Physical review. B, Condensed matter.

[47]  L. Gerward,et al.  Powder diffraction analysis of cerium dioxide at high pressure , 1993, Powder Diffraction.

[48]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[49]  L. Kępiński,et al.  Rietveld refinement of the structure of CeOCI formed in Pd/CeO2 catalyst: Notes on the existence of a stabilized tetragonal phase of La2O3 in LaPdO system , 1992 .

[50]  H.-J. Beie,et al.  Oxygen gas sensors based on CeO2 thick and thin films , 1991 .

[51]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[52]  Joshua R. Smith,et al.  Universal features of the equation of state of solids , 1989 .

[53]  Jayaraman,et al.  High-pressure x-ray diffraction study of CeO2 to 70 GPa and pressure-induced phase transformation from the fluorite structure. , 1988, Physical review. B, Condensed matter.

[54]  Jayaraman,et al.  High-pressure Raman study of CeO2 to 35 GPa and pressure-induced phase transformation from the fluorite structure. , 1988, Physical review. B, Condensed matter.

[55]  Wachter,et al.  Covalent insulator CeO2: Optical reflectivity measurements. , 1987, Physical review. B, Condensed matter.

[56]  S. Riegel,et al.  A dual-slope method for specific heat measurements , 1986 .

[57]  W. R. Dworzak,et al.  Thermodynamic Properties of Cerium Oxalate and Cerium Oxide , 1985 .

[58]  I. Riess,et al.  On the Specific Heat of Nonstoichiometric Ceria , 1985 .

[59]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[60]  M. Gupta,et al.  Thermal Expansion of CeO2, Ho2O3, and Lu2O3 from 100° to 300°K by an X‐Ray Method , 1970 .

[61]  B. Abeles Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures , 1963 .

[62]  E. Westrum,et al.  HEAT CAPACITIES AND CHEMICAL THERMODYNAMICS OF CERIUM(III) FLUORIDE AND OF CERIUM(IV) OXIDE FROM 5 TO 300°K.1 , 1961 .

[63]  W. J. Campbell,et al.  THERMAL EXPANSION AND PHASE INVERSION OF RARE-EARTH OXIDES , 1960 .

[64]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[65]  J. A. Morrison,et al.  The thermal properties of alkali halide crystals II. Analysis of experimental results , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[66]  P. Klemens,et al.  The thermal conductivity of dielectric solids at low temperatures (Theoretical) , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[67]  M. Blackman On the relation of Debye theory and the lattice theory of specific heats , 1942, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[68]  H. Casimir Note on the conduction of heat in crystals , 1938 .

[69]  O. Maldonado,et al.  Pulse method for simultaneous measurement of electric thermopower and heat conductivity at low temperatures , 1992 .

[70]  I. Riess,et al.  Phase transformations in reduced ceria: determination by thermal expansion measurements , 1989 .

[71]  K. Clausen,et al.  Inelastic neutron scattering investigation of the lattice dynamics of ThO2 and CeO2 , 1987 .

[72]  D. Taylor Thermal expansion data. II: Binary oxides with the fluorite and rutile structures, MO2, and the antifluorite structure, M2O , 1984 .

[73]  P. Debye Zur Theorie der spezifischen Wärmen , 1912 .