Min Common/Max Crossing Duality: A Simple Geometric Framework for Convex Optimization and Minimax Theory1
暂无分享,去创建一个
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] S. Kakutani. A generalization of Brouwer’s fixed point theorem , 1941 .
[3] Alan J. Hoffman,et al. Systems of inequalities involving convex functions , 1957 .
[4] A. Ghouila-Houri,et al. Programmes, jeux et réseaux de transport , 1963 .
[5] J. Stoer,et al. Convexity and Optimization in Finite Dimensions I , 1970 .
[6] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[7] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[8] H. Weinert. Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .
[9] A. Barrett. Network Flows and Monotropic Optimization. , 1984 .
[10] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[11] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[12] Adrian S. Lewis,et al. Convex Analysis And Nonlinear Optimization , 2000 .
[13] J. Frédéric Bonnans,et al. Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.
[14] Dimitri P. Bertsekas,et al. Convex Analysis and Optimization , 2003 .