Thermal conductivity measurement of pulsed-MOVPE InN alloy grown on GaN/Sapphire by 3ω method

The thermal conductivity of high-quality narrow-bandgap (0.77eV) InN grown on GaN on sapphire substrate by pulsed- MOVPE method was measured and analyzed. To accurately extract the thermal conductivities of GaN and InN films grown on sapphire substrate, 2D multilayer thermal diffusion model and extended 3ω slope technique are employed. The thermal conductivity of sapphire substrate measured is 41 W/(mK). The thermal conductivity of undoped GaN film is measured as 108 W/(mK). High-quality pulsed-MOVPE grown InN film exhibits thermal conductivity of 126 W/(mK), which is higher in comparison to the previously-reported value of porous InN ceramics 45 W/(mK), yet lower than the theoretical value 176 W/(mK) based on phonon scattering.

[1]  Y. Kobayashi,et al.  Preparation and properties of III‐V nitride thin films , 1989 .

[2]  Robert O. Pohl,et al.  The intrinsic thermal conductivity of AIN , 1987 .

[3]  D. Cahill Erratum: “Thermal conductivity measurement from 30 to 750 K: The 3ω method” [Rev. Sci. Instrum. 61, 802 (1990)] , 2002 .

[4]  D. Cahill Thermal conductivity measurement from 30 to 750 K: the 3ω method , 1990 .

[5]  Rajendra Dahal,et al.  Thermoelectric properties of InxGa1−xN alloys , 2008 .

[6]  Yik-Khoon Ee,et al.  Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures. , 2009, Optics express.

[7]  A. Yamamoto,et al.  Thermoelectric devices using InN and Al1−xInxN thin films prepared by reactive radio-frequency sputtering , 2004 .

[8]  Ronald A. Arif,et al.  Self-consistent gain analysis of type-II ‘W’ InGaN–GaNAs quantum well lasers , 2008 .

[9]  Yik-Khoon Ee,et al.  Enhancement of Light Extraction Efficiency of InGaN Quantum Wells LEDs Using SiO2 Microspheres , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[10]  Yik-Khoon Ee,et al.  Metalorganic Vapor Phase Epitaxy of III-Nitride Light-Emitting Diodes on Nanopatterned AGOG Sapphire Substrate by Abbreviated Growth Mode , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  Nelson Tansu,et al.  Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime H.P. Zhao 1 G.Y. Liu 1 X.-H. Li 1 R.A. Arif 1 G.S. Huang 1 , 2009 .

[12]  Pohl,et al.  Thermal conductivity of amorphous solids above the plateau. , 1987, Physical review. B, Condensed matter.

[13]  Yik-Khoon Ee,et al.  Self-Consistent Analysis of Strain-Compensated InGaN–AlGaN Quantum Wells for Lasers and Light-Emitting Diodes , 2009, IEEE Journal of Quantum Electronics.

[14]  Atsushi Yamamoto,et al.  Thermal diffusivity and thermoelectric figure of merit of Al1−xInxN prepared by reactive radio-frequency sputtering , 2003 .

[15]  Nelson Tansu,et al.  Influence of growth temperature and V/III ratio on the optical characteristics of narrow band gap (0.77 eV) InN grown on GaN/sapphire using pulsed MOVPE , 2008 .

[16]  I. Ferguson,et al.  Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy , 2000 .

[17]  Nelson Tansu,et al.  Analysis of thermoelectric characteristics of AlGaN and InGaN semiconductors , 2009, OPTO.

[18]  Ronald A. Arif,et al.  Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime , 2009 .

[19]  Nelson Tansu,et al.  MOVPE and photoluminescence of narrow band gap (0.77 eV) InN on GaN/sapphire by pulsed growth mode , 2008 .

[20]  Y. Harada,et al.  Growth and Characterization of InN Heteroepitaxial Layers Grown on Si Substrates by ECR-Assisted MBE , 2001 .

[21]  J. Gilchrist,et al.  Optimization of Light Extraction Efficiency of III-Nitride LEDs With Self-Assembled Colloidal-Based Microlenses , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[22]  Ronald A. Arif,et al.  MOVPE of InN films on GaN templates grown on sapphire and silicon(111) substrates , 2008 .

[23]  A. Yamamoto,et al.  Thermoelectric properties of Al1−xInxN and Al1−y−zGayInzN prepared by radio-frequency sputtering: Toward a thermoelectric power device , 2003 .

[24]  Yik-Khoon Ee,et al.  Spontaneous Emission and Characteristics of Staggered InGaN Quantum-Well Light-Emitting Diodes , 2008, IEEE Journal of Quantum Electronics.

[25]  Ronald A. Arif,et al.  Optical Gain Analysis of Strain Compensated InGaN-AlGaN Quantum Well Active Regions for Lasers Emitting at 420-500 nm , 2007 .

[26]  Ian T. Ferguson,et al.  Characterization of InN layers grown by high-pressure chemical vapor deposition , 2006 .

[27]  D. Cahill,et al.  Thermal conductivity of a-Si:H thin films. , 1994, Physical review. B, Condensed matter.

[28]  S. Denbaars,et al.  Thermal conductivity of lateral epitaxial overgrown GaN films , 1999 .

[29]  V. Davydov,et al.  Single-crystalline InN films with an absorption edge between 0.7 and 2 eV grown using different techniques and evidence of the actual band gap energy , 2003 .

[30]  Ronald A. Arif,et al.  Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes , 2007 .

[31]  Seungmin Lee,et al.  Heat transport in thin dielectric films , 1997 .

[32]  M. Boćkowski,et al.  Thermal properties of indium nitride , 1998 .

[33]  Hongping Zhao,et al.  Design Analysis of Staggered InGaN Quantum Wells Light-Emitting Diodes at 500–540 nm , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[34]  Thermoelectric and thermal properties of AlInN thin films prepared by reactive radio-frequency sputtering , 2004 .

[35]  Ronald A. Arif,et al.  Type-II InGaN-GaNAs quantum wells for lasers applications , 2008 .

[36]  Rajendra Dahal,et al.  Thermoelectric Properties of In0.3Ga0.7N Alloys , 2009 .

[37]  J. Pankove,et al.  Thermal Conductivity of GaN, 25-360 K , 1977 .