Visualizing the performance loss of solar cells by IR thermography — an evaluation study on CIGS with artificially induced defects
暂无分享,去创建一个
Christoph J. Brabec | Michael Richter | Andreas Vetter | Ingo Riedel | Peter Kubis | S. J. Heise | J. Ohland | C. Brabec | S. Heise | A. Vetter | P. Kubis | J. Ohland | M. Richter | I. Riedel | Finn Babbe | Bernhard Hofbeck | Finn Babbe | Bernhard Hofbeck
[1] Otwin Breitenstein,et al. The reliability of thermography- and luminescence-based series resistance and saturation current density imaging , 2015 .
[2] W. Warta,et al. Solar cell efficiency tables (Version 45) , 2015 .
[3] Andreas Bauer,et al. Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7% , 2015 .
[4] Frank W. Fecher,et al. Influence of a shunt on the electrical behavior in thin film photovoltaic modules – A 2D finite element simulation study , 2014 .
[5] Frank W. Fecher,et al. The influence of defects on the cellular open circuit voltage in CuInGaSe2 thin film solar modules—An illuminated lock-in thermography study , 2014 .
[6] Budi Tjahjono,et al. Photoluminescence imaging for determining the spatially resolved implied open circuit voltage of silicon solar cells , 2014 .
[7] Frank W. Fecher,et al. Lock‐in thermography as a tool for quality control of photovoltaic modules , 2013 .
[8] Christoph J. Brabec,et al. Reliability of IR-imaging of PV-plants under operating conditions , 2012 .
[9] Otwin Breitenstein,et al. Local efficiency analysis of solar cells based on lock-in thermography , 2012 .
[10] Martin Kasemann,et al. Calculation of quantitative shunt values using photoluminescence imaging , 2012 .
[11] U. Zimmermann,et al. Microanalysis of laser micro-welded interconnections in CIGS PV modules , 2012 .
[12] H. Straube,et al. Quantitative evaluation of loss mechanisms in thin film solar cells using lock-in thermography , 2011 .
[13] O. Breitenstein,et al. Can Luminescence Imaging Replace Lock-in Thermography on Solar Cells? , 2011, IEEE Journal of Photovoltaics.
[14] Marika Edoff,et al. Next generation interconnective laser patterning of CIGS thin film modules , 2011 .
[15] R. Sundaramoorthy,et al. Applications of imaging techniques to Si, Cu(In,Ga)Se2, and CdTe and correlation to solar cell parameters , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.
[16] M. Edoff,et al. Simulating material inhomogeneities and defects in CIGS thin‐film solar cells , 2009 .
[17] O. Breitenstein,et al. Lock-in Thermography: A Versatile Tool for Failure Analysis of Solar Cells , 2009, EDFA Technical Articles.
[18] J. Sites,et al. Impact of sheet resistance on 2-D modeling of thin-film solar cells , 2009 .
[19] K. Bothe,et al. Correlation between spatially resolved solar cell efficiency and carrier lifetime of multicrystalline silicon , 2008 .
[20] M. Powalla,et al. Large-area CIGS modules: Pilot line production and new developments , 2006 .
[21] Wilhelm Warta,et al. Investigation of series resistance losses by illuminated lock‐in thermography , 2005 .
[22] Otwin Breitenstein,et al. Series resistance imaging in solar cells by lock‐in thermography , 2005 .
[23] M. Werner,et al. Shunt types in crystalline silicon solar cells , 2004 .
[24] Wilhelm Warta,et al. Lock-in Thermography: Basics and Use for Evaluating Electronic Devices and Materials , 2003 .
[25] O. Breitenstein,et al. CLASSIFICATION OF SHUNTING MECHANISMS IN CRYSTALLINE SILICON SOLAR CELLS , 2002 .