Homogeneous dynamical systems theory

We study controlled homogeneous dynamical systems and derive conditions under which the system is perspective controllable. We also derive conditions under which the system is observable in the presence of a control over the complex base field. In the absence of any control input, we derive a necessary and sufficient condition for observability of a homogeneous dynamical system over the real base field. The observability criterion obtained generalizes a well known Popov-Belevitch-Hautus rank criterion to check the observability of a linear dynamical system. Finally, we introduce rational, exponential, interpolation problems as an important step toward solving the problem of realizing homogeneous dynamical systems with minimum state dimensions.

[1]  Marie-José Aldon,et al.  Mobile robot attitude estimation by fusion of inertial data , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[2]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[3]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[4]  David Robinson,et al.  The oculomotor control system: A review , 1968 .

[5]  Xiaoming Hu,et al.  Nonlinear pitch and roll estimation for walking robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[6]  Radu Horaud,et al.  Visual Servoing from Lines , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[7]  Antti J. Koivo,et al.  Real-time vision feedback for servoing robotic manipulator with self-tuning controller , 1991, IEEE Trans. Syst. Man Cybern..

[8]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[9]  W. Dayawansa,et al.  A necessary and sufficient condition for the perspective observability problem , 1995 .

[10]  Mrdjan Jankovic,et al.  Some Problems In Perspective System Theory And Its Application To Machine Vision , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Bijoy K. Ghosh,et al.  A realization theory for perspective systems with applications to parameter estimation problems in machine vision , 1996, IEEE Trans. Autom. Control..

[12]  Naomi Ehrich Leonard Stabilization of underwater vehicle dynamics with symmetry-breaking potentials , 1997 .

[13]  Éric Marchand,et al.  Active Vision for Complete Scene Reconstruction and Exploration , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  B. Ghosh,et al.  A Perspective Theory for Motion and Shape Estimation in Machine Vision , 1995 .

[15]  M. J. Abzug,et al.  ON THE STABILITY OF A CLASS OF DISCONTINUOUS ATTITUDE CONTROL SYSTEMS , 1963 .

[16]  金谷 健一 Group-theoretical methods in image understanding , 1990 .

[17]  P. Perona,et al.  Motion estimation via dynamic vision , 1996, IEEE Trans. Autom. Control..

[18]  Thomas S. Huang,et al.  A linear algorithm for motion estimation using straight line correspondences , 1988, Comput. Vis. Graph. Image Process..

[19]  Gregory S. Ammar,et al.  Exponential interpolation: theory and numerical algorithms , 1991 .

[20]  Yiannis Aloimonos,et al.  Active vision , 2004, International Journal of Computer Vision.

[21]  Stefano Soatto,et al.  3-D Structure from Visual Motion: Modeling, Representation and Observability , 1997, Autom..

[22]  M. Sain Finite dimensional linear systems , 1972 .

[23]  Roger W. Brockett,et al.  Nonlinear Systems and Nonlinear Estimation Theory , 1981 .

[24]  L. Stark,et al.  Control of human eye movements: I. modelling of extraocular muscle , 1974 .

[25]  D. Robinson The mechanics of human saccadic eye movement , 1964, The Journal of physiology.

[26]  V. Borkar,et al.  DIMENSIONAL LINEAR SYSTEMS , 1981 .

[27]  Nikolaos Papanikolopoulos,et al.  Adaptive robotic visual tracking: theory and experiments , 1993, IEEE Trans. Autom. Control..

[28]  Satoru Takahashi,et al.  Identification of Riccati dynamics under perspective and orthographic observations , 2000, IEEE Trans. Autom. Control..

[29]  David J. Kriegman,et al.  Structure and Motion from Line Segments in Multiple Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Mark A. Shayman,et al.  Phase portrait of the matrix Riccati equation , 1986 .

[31]  Koichi Hashimoto,et al.  Visual Servoing: Real-Time Control of Robot Manipulators Based on Visual Sensory Feedback , 1993 .

[32]  M.L.J. Hautus,et al.  Controllability and observability conditions of linear autonomous systems , 1969 .

[33]  Gregory D. Hager,et al.  The confluence of vision and control, Block Island Workshop on Vision and Control, June 23-27, 1997, Block Island, Rhode Island, USA , 1998, Block Island Workshop on Vision and Control.

[34]  Joachim Rosenthal,et al.  An observability criterion for dynamic systems governed by Riccati differential equations , 1996, IEEE Trans. Autom. Control..

[35]  B. Ghosh,et al.  A generalized Popov-Belevitch-Hautus test of observability , 1995, IEEE Trans. Autom. Control..

[36]  Pradeep K. Khosla,et al.  Applying the Controlled Active Vision Framework to the Visual Servoing Problem , 1993, 1993 American Control Conference.