Diffuse-charge dynamics in electrochemical systems.

The response of a model microelectrochemical system to a time-dependent applied voltage is analyzed. The article begins with a fresh historical review including electrochemistry, colloidal science, and microfluidics. The model problem consists of a symmetric binary electrolyte between parallel-plate blocking electrodes, which suddenly apply a voltage. Compact Stern layers on the electrodes are also taken into account. The Nernst-Planck-Poisson equations are first linearized and solved by Laplace transforms for small voltages, and numerical solutions are obtained for large voltages. The "weakly nonlinear" limit of thin double layers is then analyzed by matched asymptotic expansions in the small parameter epsilon= lambdaD/L, where lambdaD is the screening length and L the electrode separation. At leading order, the system initially behaves like an RC circuit with a response time of lambdaDL/D (not lambdaD2/D), where D is the ionic diffusivity, but nonlinearity violates this common picture and introduces multiple time scales. The charging process slows down, and neutral-salt adsorption by the diffuse part of the double layer couples to bulk diffusion at the time scale, L2/D. In the "strongly nonlinear" regime (controlled by a dimensionless parameter resembling the Dukhin number), this effect produces bulk concentration gradients, and, at very large voltages, transient space charge. The article concludes with an overview of more general situations involving surface conduction, multicomponent electrolytes, and Faradaic processes.

[1]  Ponisseril Somasundaran,et al.  ENCYCLOPEDIA OF Surface and Colloid Science , 2006 .

[2]  M. Bazant,et al.  Induced-charge electrokinetic phenomena: theory and microfluidic applications. , 2003, Physical review letters.

[3]  M. Bazant,et al.  Induced-charge electro-osmosis , 2003, Journal of Fluid Mechanics.

[4]  M. Mpholo,et al.  Low voltage plug flow pumping using anisotropic electrode arrays , 2003 .

[5]  H. Morgan,et al.  Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  D A Saville,et al.  Electrically guided assembly of planar superlattices in binary colloidal suspensions. , 2003, Physical review letters.

[7]  D. Saville,et al.  A broad frequency range dielectric spectrometer for colloidal suspensions: cell design, calibration, and validation. , 2003, Journal of colloid and interface science.

[8]  A. Ajdari,et al.  Electrically induced flows in the vicinity of a dielectric stripe on a conducting plane , 2002, The European physical journal. E, Soft matter.

[9]  Frequency-dependent electroosmosis. , 2002, Journal of colloid and interface science.

[10]  H. Morgan,et al.  Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  V. Studer,et al.  Fabrication of microfluidic devices for AC electrokinetic fluid pumping , 2002 .

[12]  A. Ajdari,et al.  Electrically induced interactions between colloidal particles in the vicinity of a conducting plane. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  A. Buguin,et al.  Rectified motion of colloids in asymmetrically structured channels. , 2002, Physical review letters.

[14]  Hywel Morgan,et al.  Comment on "Theoretical model of electrode polarization and AC electroosmotic fluid flow in planar electrode arrays" , 2001 .

[15]  Theoretical Model of Electrode Polarization and AC Electroosmotic Fluid Flow in Planar Electrode Arrays. , 2001, Journal of colloid and interface science.

[16]  David P. Lesmes,et al.  Frequency-Dependent Streaming Potentials. , 2001, Journal of colloid and interface science.

[17]  A. Rennie,et al.  Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  M. Bazant,et al.  Asymptotic Analysis of Diffuse-Layer Effects on Time-Dependent Interfacial Kinetics , 2000, cond-mat/0006104.

[19]  T. Pajkossy,et al.  On the origin of capacitance dispersion of rough electrodes , 2000 .

[20]  Kaler,et al.  Theory of Frequency-Dependent Polarization of General Planar Electrodes with Zeta Potentials of Arbitrary Magnitude in Ionic Media. , 2000, Journal of colloid and interface science.

[21]  Kaler,et al.  Theory of Frequency-Dependent Polarization of General Planar Electrodes with Zeta Potentials of Arbitrary Magnitude in Ionic Media. , 2000, Journal of colloid and interface science.

[22]  Castellanos,et al.  Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  Castellanos,et al.  Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  H. Morgan,et al.  Ac electrokinetics: a survey of sub-micrometre particle dynamics , 2000 .

[25]  A. Ajdari,et al.  Pumping liquids using asymmetric electrode arrays , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  Castellanos,et al.  AC Electric-Field-Induced Fluid Flow in Microelectrodes. , 1999, Journal of colloid and interface science.

[27]  S. Orszag,et al.  Advanced mathematical methods for scientists and engineers I: asymptotic methods and perturbation theory. , 1999 .

[28]  H. Morgan,et al.  Ac electrokinetics: a review of forces in microelectrode structures , 1998 .

[29]  N. Decoster,et al.  AC field induced two-dimensional aggregation of multilamellar vesicles , 1998 .

[30]  Ilhan A. Aksay,et al.  Assembly of Colloidal Crystals at Electrode Interfaces , 1997 .

[31]  L. Jouniaux,et al.  Laboratory measurements anomalous 0.1–0.5 Hz streaming potential under geochemical changes: Implications for electrotelluric precursors to earthquakes , 1997 .

[32]  Joseph W. Jerome,et al.  Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Mathematical Study , 1997, SIAM J. Appl. Math..

[33]  Robert S. Eisenberg,et al.  Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Perturbation and Simulation Study , 1997, SIAM J. Appl. Math..

[34]  Michael Seul,et al.  Assembly of ordered colloidal aggregrates by electric-field-induced fluid flow , 1997, Nature.

[35]  J. Cole,et al.  Multiple Scale and Singular Perturbation Methods , 1996 .

[36]  R. Pethig Dielectrophoresis: Using Inhomogeneous AC Electrical Fields to Separate and Manipulate Cells , 1996 .

[37]  D. Chan,et al.  The Impedance of the Planar Diffuse Double Layer: An Exact Low-Frequency Theory , 1995 .

[38]  J. Henry,et al.  Asymptotic analysis of reaction-diffusion-electromigration systems , 1995 .

[39]  T. Pajkossy,et al.  Impedance of rough capacitive electrodes , 1994 .

[40]  Winterhalter,et al.  Electric-field-dependent thermal fluctuations of giant vesicles. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  S. Dukhin,et al.  Non-equilibrium electric surface phenomena , 1993 .

[42]  Howard Reiss,et al.  A numerical study of the equilibrium and nonequilibrium diffuse double layer in electrochemical cells , 1992 .

[43]  James Ross Macdonald,et al.  IMPEDANCE SPECTROSCOPY: OLD PROBLEMS AND NEW DEVELOPMENTS , 1990 .

[44]  Roger Parsons,et al.  The electrical double layer: recent experimental and theoretical developments , 1990 .

[45]  J. Henry,et al.  Singular perturbation theory applied to the electrochemistry equations in the case of electroneutrality , 1989 .

[46]  John L. Anderson,et al.  Colloid Transport by Interfacial Forces , 1989 .

[47]  D. A. Saville,et al.  Colloidal Dispersions: ACKNOWLEDGEMENTS , 1989 .

[48]  Isaak Rubinstein Electro-diffusion of ions , 1987 .

[49]  D. Prieve,et al.  Motion of a particle generated by chemical gradients. Part 2. Electrolytes , 1982, Journal of Fluid Mechanics.

[50]  E. Hinch,et al.  Dielectric response of a dilute suspension of spheres with thin double layers in an asymmetric electrolyte , 1984 .

[51]  R. W. O'Brien The solution of the electrokinetic equations for colloidal particles with thin double layers , 1983 .

[52]  L. White,et al.  The polarization impedance of an ideally polarizable plane electrode , 1982 .

[53]  A. Kornyshev,et al.  Conductivity and space charge phenomena in solid electrolytes with one mobile charge carrier species, a review with original material , 1981 .

[54]  S. Dukhin,et al.  Kinetic aspects of electrochemistry of disperse systems. Part II. Induced dipole moment and the non-equilibrium double layer of a colloid particle , 1980 .

[55]  B. Derjaguin,et al.  Kinetic aspects of electrochemistry of disperse systems. Part I. Introduction , 1980 .

[56]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[57]  Leonid Shtilman,et al.  Voltage against current curves of cation exchange membranes , 1979 .

[58]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[59]  Richard P. Buck,et al.  Numerical solution of the Nernst-Planck and poisson equation system with applications to membrane electrochemistry and solid state physics , 1978 .

[60]  M. A. Vorotyntsev,et al.  Aspects of conductivity and space charge phenomena in solid electrolytes , 1978 .

[61]  J. A. Harrison,et al.  A comment on orientational models for the solvent at the electrode-electrolyte interface , 1978 .

[62]  Lee R. White,et al.  Electrophoretic mobility of a spherical colloidal particle , 1978 .

[63]  J. Ross Macdonald,et al.  Electrode kinetics, equivalent circuits, and system characterization: Small-signal conditions , 1977 .

[64]  M. A. Vorotyntsev,et al.  Electric current across the metal-solid electrolyte interface II. low-amplitude alternating current† , 1977 .

[65]  É. Itskovich,et al.  Electric current across the metal–solid electrolyte interface I. Direct current, current–voltage characteristic , 1977 .

[66]  J. Macdonald Complex rate constant for an electrochemical system involving an adsorbed intermediate , 1976 .

[67]  J. Macdonald,et al.  Some aspects of polarization in ionic crystals with electrode reactions , 1976 .

[68]  J. Ross Macdonald,et al.  Simplified impedance/frequency‐response results for intrinsically conducting solids and liquids , 1974 .

[69]  J. Macdonald BINARY ELECTROLYTE SMALL-SIGNAL FREQUENCY RESPONSE , 1974 .

[70]  W. Helfrich Deformation of Lipid Bilayer Spheres by Electric Fields , 1974, Zeitschrift fur Naturforschung. Section C, Biosciences.

[71]  Eckard Specht,et al.  PHYSIK , 2018 .

[72]  J. Macdonald Double layer capacitance and relaxation in electrolytes and solids , 1970 .

[73]  R. Buck Diffuse layer charge relaxation at the ideally polarized electrode , 1969 .

[74]  A. Macgillivray,et al.  Nernst‐Planck Equations and the Electroneutrality and Donnan Equilibrium Assumptions , 1968 .

[75]  C. Baker,et al.  Double layer relaxation in liquid electrolytes. Part 1.—Theory of the space charge polarization , 1968 .

[76]  John Newman,et al.  Double layer structure at the limiting current , 1967 .

[77]  P. Jacobs,et al.  Polarization in potassium chloride crystals , 1966 .

[78]  R. P. Bell,et al.  Modern Electrochemistry , 1966, Nature.

[79]  J. Cooley,et al.  THE NUMERICAL SOLUTION OF THE TIME-DEPENDENT NERNST-PLANCK EQUATIONS. , 1965, Biophysical journal.

[80]  J. Newman,et al.  THE POLARIZED, DIFFUSE DOUBLE LAYER , 1965 .

[81]  P. Delahay,et al.  Double Layer and Electrode Kinetics , 1965 .

[82]  J. Macdonald Theory of the Differential Capacitance of the Double Layer in Unadsorbed Electrolytes , 1954 .

[83]  R. J. Friauf Polarization Effects in the Ionic Conductivity of Silver Bromide , 1954 .

[84]  J. Macdonald Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes , 1953 .

[85]  G. Jaffe,et al.  On Polarization in Liquid Dielectrics , 1953 .

[86]  Y. Orita,et al.  Electrolytes , 1953 .

[87]  Hung-Chih Chang,et al.  Polarization in Electrolytic Solutions. Part I. Theory , 1952 .

[88]  G. Jaffe Theory of Conductivity of Semiconductors , 1952 .

[89]  D. Grahame Effects of Dielectric Saturation upon the Diffuse Double Layer and the Free Energy of Hydration of Ions , 1950 .

[90]  Frequency Dependence of the Capacity of a Diffuse Double Layer , 1948 .

[91]  D. Grahame The electrical double layer and the theory of electrocapillarity. , 1947, Chemical reviews.

[92]  J. Randles Kinetics of rapid electrode reactions , 1947 .

[93]  J. Bikerman Electrokinetic equations and surface conductance. A survey of the diffuse double layer theory of colloidal solutions , 1940 .

[94]  J. J. Bikerman Wissenschaftliche und technische Sammelreferate , 1935 .

[95]  G. Jaffé Theorie der Leitfähigkeit polarisierbarer Medien. I , 1933 .

[96]  D. Chapman,et al.  LI. A contribution to the theory of electrocapillarity , 1913 .

[97]  M. Krüger,et al.  Zur Bestimmung der Harnsäure und Purinbasen im menschlichen Harn. , 1905 .

[98]  E. Warburg,et al.  Ueber die Polarisationscapacität des Platins , 1901 .

[99]  E. Warburg,et al.  Ueber das Verhalten sogenannter unpolarisirbarer Elektroden gegen Wechselstrom , 1899 .

[100]  M. Planck,et al.  Ueber die Erregung von Electricität und Wärme in Electrolyten , 1890 .

[101]  W. Nernst,et al.  Die elektromotorische Wirksamkeit der Jonen , 1889 .

[102]  H. Helmholtz,et al.  Studien über electrische Grenzschichten , 1879 .

[103]  H. Helmholtz Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch‐elektrischen Versuche , 1853 .