Light‐induced changes of the pH gradient and the membrane potential in H. halobium

The purple membrane of Halobacteria containing the retinal protein complex bacteriorhodopsin [ 1 ] was proposed to function as a light-driven proton pump [2,3]. Photophosphorylation mediated by bacteriorhodopsin has been observed under anaerobic conditions [4-61 and is best explained on the basis of the chemiosmotic hypothesis of Peter Mitchell [7]. Bacteriorhodopsin as an electrogenic p!oton pump creates transmembrane potentials and pH gradients in artificial systems such as liposomes and planar phospho lipid membranes [8-lo] . For the measurement of membrane potentials and pH gradients across bacterial cell membranes (e.g. S. faecalis) the distribution of lipophilic ions and weak acids (e.g. DMO) has been introduced [ 1 1 141. In this paper we report experiments demonstrating light-induced changes of the electrochemical proton gradient in intact cells of Halobacterium halobium.

[1]  V. Skulachev,et al.  Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin. , 1974, Nature.

[2]  M. Klingenberg,et al.  [104] Means of terminating reactions , 1967 .

[3]  D. Oesterhelt,et al.  Rhodopsin-like protein from the purple membrane of Halobacterium halobium. , 1971, Nature: New biology.

[4]  V. Skulachev,et al.  Bacteriorhodopsin as an electrogenic proton pump: Reconstitution of bacteriorhodopsin proteoliposomes generating Δψ and ΔpH , 1974 .

[5]  T. Weichselbaum,et al.  An accurate and rapid method for the determination of proteins in small amounts of blood serum and plasma. , 1946, American journal of clinical pathology.

[6]  F. E. Critchfield,et al.  Effect of Neutral Salts on pH of Acid Solutions , 1959 .

[7]  E A Liberman,et al.  Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria. , 1970, Biochimica et biophysica acta.

[8]  W. Stoeckenius,et al.  Photophosphorylation in Halobacterium halobium. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[9]  D. Oesterhelt,et al.  Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. , 1974, Methods in enzymology.

[10]  V. Skulachev,et al.  Electrogenesis by bacteriorhodopsin incorporated in a planar phospholipid membrane , 1974, FEBS letters.

[11]  F. Harold,et al.  A transmembrane pH gradient in Streptococcus faecalis: origin, and dissipation by proton conductors and N,N'-dicyclohexylcarbodimide. , 1970, Biochimica et biophysica acta.

[12]  J. F. Sotos,et al.  Determination of intramitochondrial pH and intramitochondrial-extramitochondrial pH gradient of isolated heart mitochondria by the use of 5,5-dimethyl-2,4-oxazolidinedione. I. Changes during respiration and adenosine triphosphate-dependent transport of Ca++, Mg++, and Zn++. , 1968, The Journal of biological chemistry.

[13]  R. Thauer,et al.  The internal-alkaline pH gradient, sensitive to uncoupler and ATPase inhibitor, in growing Clostridium pasteurianum. , 1975, European journal of biochemistry.

[14]  K. Werdan,et al.  Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space. , 1973, Biochimica et biophysica acta.

[15]  F. Harold,et al.  Cation transport and electrogenesis by Streptococcus faecalis. I. The membrane potential. , 1972, The Journal of membrane biology.

[16]  K. Schwabe Zur pH-Verschiebung in wäßrigen Säurelösungen durch Neutralsalze , 1964 .

[17]  George A. Bray,et al.  A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter , 1960 .

[18]  L. Grinius,et al.  Conversion ofEscherichia coli cell-produced metabolic energy into electric form , 1975, Journal of Bioenergetics.

[19]  D. Oesterhelt,et al.  Functions of a new photoreceptor membrane. , 1973, Proceedings of the National Academy of Sciences of the United States of America.