Dynamic contrast optical coherence tomography images transit time and quantifies microvascular plasma volume and flow in the retina and choriocapillaris

Despite the prevalence of optical imaging techniques to measure hemodynamics in large retinal vessels, quantitative measurements of retinal capillary and choroidal hemodynamics have traditionally been challenging. Here, a new imaging technique called dynamic contrast optical coherence tomography (DyC-OCT) is applied in the rat eye to study microvascular blood flow in individual retinal and choroidal layers in vivo. DyC-OCT is based on imaging the transit of an intravascular tracer dynamically as it passes through the field-of-view. Hemodynamic parameters can be determined through quantitative analysis of tracer kinetics. In addition to enabling depth-resolved transit time, volume, and flow measurements, the injected tracer also enhances OCT angiograms and enables clear visualization of the choriocapillaris, particularly when combined with a post-processing method for vessel enhancement. DyC-OCT complements conventional OCT angiography through quantification of tracer dynamics, similar to fluorescence angiography, but with the important added benefit of laminar resolution. ©2016 Optical Society of America OCIS codes: (110.4500) Optical coherence tomography; (170.3880) Medical and biological imaging; (170.5380) Physiology; (170.1470) Blood or tissue constituent monitoring; (170.6900) Three-dimensional microscopy; (170.5755) Retina scanning. References and links 1. T. E. Kornfield and E. A. Newman, “Regulation of blood flow in the retinal trilaminar vascular network,” J. Neurosci. 34(34), 11504–11513 (2014). 2. E. A. Newman, “Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature,” J. Cereb. Blood Flow Metab. 33(11), 1685–1695 (2013). 3. J. Kur, E. A. Newman, and T. Chan-Ling, “Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease,” Prog. Retin. Eye Res. 31(5), 377–406 (2012). 4. S. S. Hayreh, “In vivo choroidal circulation and its watershed zones,” Eye (Lond.) 4(2), 273–289 (1990). 5. G. Li, J. W. Kiel, D. P. Cardenas, B. H. De La Garza, and T. Q. Duong, “Postocclusive reactive hyperemia occurs in the rat retinal circulation but not in the choroid,” Invest. Ophthalmol. Vis. Sci. 54(7), 5123–5131 (2013). 6. A. Alm and A. Bill, “Blood flow and oxygen extraction in the cat uvea at normal and high intraocular pressures,” Acta Physiol. Scand. 80(1), 19–28 (1970). 7. A. Alm and A. Bill, “The oxygen supply to the retina. II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. A study with radioactively labelled microspheres including flow determinations in brain and some other tissues,” Acta Physiol. Scand. 84(3), 306– 319 (1972). 8. H. R. Novotny and D. L. Alvis, “A method of photographing fluorescence in circulating blood in the human retina,” Circulation 24(1), 82–86 (1961). 9. G. Bjärnhall, L. Tomic, H. K. Mishima, H. Tsukamoto, and A. Alm, “Retinal mean transit time in patients with primary open-angle glaucoma and normal-tension glaucoma,” Acta Ophthalmol. Scand. 85(1), 67–72 (2007). 10. R. W. Flower, “Extraction of choriocapillaris hemodynamic data from ICG fluorescence angiograms,” Invest. Ophthalmol. Vis. Sci. 34(9), 2720–2729 (1993). 11. L. Tomic, O. Mäepea, G. O. Sperber, and A. Alm, “Comparison of retinal transit times and retinal blood flow: a study in monkeys,” Invest. Ophthalmol. Vis. Sci. 42(3), 752–755 (2001). Vol. 7, No. 10 | 1 Oct 2016 | BIOMEDICAL OPTICS EXPRESS 4289 #269104 Journal © 2016 http://dx.doi.org/10.1364/BOE.7.004289 Received 30 Jun 2016; revised 19 Aug 2016; accepted 16 Sep 2016; published 27 Sep 2016 12. D. R. Williams, “Imaging single cells in the living retina,” Vision Res. 51(13), 1379–1396 (2011). 13. J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112(12), 2219–2224 (2005). 14. Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16(17), 12746–12756 (2008). 15. J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(4), 781–793 (2011). 16. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997). 17. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997). 18. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003). 19. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008). 20. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express 18(3), 2477–2494 (2010). 21. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express 2(6), 1539–1552 (2011). 22. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006). 23. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008). 24. B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009). 25. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007). 26. B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20(18), 20516–20534 (2012). 27. B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, and J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express 4(1), 51–65 (2013). 28. H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express 4(6), 803–821 (2013). 29. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008). 30. D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: a technique for noninvasive angiography,” Ophthalmology 121(1), 180–187 (2014). 31. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012). 32. V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express 3(3), 612–629 (2012). 33. A. Bouwens, D. Szlag, M. Szkulmowski, T. Bolmont, M. Wojtkowski, and T. Lasser, “Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography,” Opt. Express 21(15), 17711–17729 (2013). 34. P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011). 35. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999). 36. H. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17525– 17530 (2006). 37. Y. Zhang, O. San Emeterio Nateras, Q. Peng, C. A. Rosende, and T. Q. Duong, “Blood flow MRI of the human retina/choroid during rest and isometric exercise,” Invest. Ophthalmol. Vis. Sci. 53(7), 4299–4305 (2012). Vol. 7, No. 10 | 1 Oct 2016 | BIOMEDICAL OPTICS EXPRESS 4290

[1]  R. Braun,et al.  Erythrocyte flow in choriocapillaris of normal and diabetic rats. , 2009, Microvascular research.

[2]  Robin Fåhræus,et al.  THE VISCOSITY OF THE BLOOD IN NARROW CAPILLARY TUBES , 1931 .

[3]  R W Flower,et al.  Extraction of choriocapillaris hemodynamic data from ICG fluorescence angiograms. , 1993, Investigative ophthalmology & visual science.

[4]  Barry Cense,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. , 2003, Optics express.

[5]  Maciej Wojtkowski,et al.  Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography. , 2013, Optics express.

[6]  Scott Barry,et al.  OCT methods for capillary velocimetry , 2012, Biomedical optics express.

[7]  Qingming Luo,et al.  Controling the scattering of Intralipid by using optical clearing agents , 2009, Physics in medicine and biology.

[8]  B. Rosen,et al.  High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis , 1996, Magnetic resonance in medicine.

[9]  J. Izatt,et al.  In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. , 1997, Optics letters.

[10]  Ruikang K. Wang,et al.  Three-dimensional optical micro-angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo , 2007, Physics in medicine and biology.

[11]  Carlo Tomasi,et al.  Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography , 2013, Biomedical optics express.

[12]  Leif Østergaard,et al.  The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[13]  E. Vaucher,et al.  Quantitative and regional measurement of retinal blood flow in rats using N-isopropyl-p-[14C]-iodoamphetamine ([14C]-IMP). , 2009, Experimental eye research.

[14]  A. Roggan,et al.  Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm. , 1999, Journal of biomedical optics.

[15]  B. Rosen,et al.  High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results , 1996, Magnetic resonance in medicine.

[16]  J. Duker,et al.  Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography , 2013, PloS one.

[17]  Eric A Newman,et al.  Regulation of Blood Flow in the Retinal Trilaminar Vascular Network , 2014, The Journal of Neuroscience.

[18]  Harsha Radhakrishnan,et al.  Compartment-resolved Imaging of Cortical Functional Hyperemia with Oct Angiography References and Links , 2022 .

[19]  J. Izatt,et al.  Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. , 2008, Journal of biomedical optics.

[20]  Y. Yasuno,et al.  An approach to measure blood flow in single choroidal vessel using Doppler optical coherence tomography. , 2012, Investigative ophthalmology & visual science.

[21]  Timothy Q. Duong,et al.  Structural and functional MRI reveals multiple retinal layers , 2006, Proceedings of the National Academy of Sciences.

[22]  Conrad W. Merkle,et al.  Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography , 2016, NeuroImage.

[23]  R. Sergott,et al.  Color Doppler analysis of ocular vessel blood velocity in normal-tension glaucoma. , 1994, American journal of ophthalmology.

[24]  K. Zierler Equations for Measuring Blood Flow by External Monitoring of Radioisotopes , 1965, Circulation research.

[25]  Brett E. Bouma,et al.  Statistical Properties of Phase-Decorrelation in Phase-Resolved Doppler Optical Coherence Tomography , 2009, IEEE Transactions on Medical Imaging.

[26]  H. Novotny,et al.  A Method of Photographing Fluorescence in Circulating Blood in the Human Retina , 1961, Circulation.

[27]  J. D. de Boer,et al.  Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid. , 2011, Optics Express.

[28]  Harsha Radhakrishnan,et al.  Mapping the 3D Connectivity of the Rat Inner Retinal Vascular Network Using OCT Angiography. , 2015, Investigative ophthalmology & visual science.

[29]  S. Hayreh In vivo choroidal circulation and its watershed zones , 1990, Eye.

[30]  W. Kuebler,et al.  Noninvasive Measurement of Regional Cerebral Blood Flow by Near-Infrared Spectroscopy and Indocyanine Green , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[31]  Martin F. Kraus,et al.  Split-spectrum amplitude-decorrelation angiography with optical coherence tomography , 2012, Optics express.

[32]  David Williams Imaging single cells in the living retina , 2011, Vision Research.

[33]  M Chopp,et al.  High resolution quantitation of microvascular plasma perfusion in non-ischemic and ischemic rat brain by laser-scanning confocal microscopy. , 1999, Brain research. Brain research protocols.

[34]  Robert J Zawadzki,et al.  Phase-variance optical coherence tomography: a technique for noninvasive angiography. , 2014, Ophthalmology.

[35]  Yuankai K. Tao,et al.  Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform. , 2008, Optics express.

[36]  Adrian Mariampillai,et al.  Speckle variance detection of microvasculature using swept-source optical coherence tomography. , 2008, Optics letters.

[37]  S. Burns,et al.  In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy. , 2008, Optics express.

[38]  Edmund Koch,et al.  Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range. , 2011, Journal of biomedical optics.

[39]  A. Roorda,et al.  Direct and noninvasive assessment of parafoveal capillary leukocyte velocity. , 2005, Ophthalmology.

[40]  Austin Roorda,et al.  Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope , 2011, Biomedical optics express.

[41]  Austin Roorda,et al.  Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO , 2012, Biomedical optics express.

[42]  David A. Boas,et al.  Quantitative cerebral blood flow with Optical Coherence Tomography , 2010, Optics express.

[43]  C. Desjardins,et al.  Microvessel hematocrit: measurement and implications for capillary oxygen transport. , 1987, The American journal of physiology.

[44]  P Schilder,et al.  Estimation of pulsatile ocular blood flow from intraocular pressure , 1989, Acta ophthalmologica. Supplement.

[45]  K. Zierler,et al.  On the theory of the indicator-dilution method for measurement of blood flow and volume. , 1954, Journal of applied physiology.

[46]  Leopold Schmetterer,et al.  A comparison between laser interferometric measurement of fundus pulsation and pneumotonometric measurement of pulsatile ocular blood flow 1. Baseline considerations , 2000, Eye.

[47]  Johannes F de Boer,et al.  Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans. , 2012, Optics express.

[48]  Daniel M. Schwartz,et al.  Optical imaging of the chorioretinal vasculature in the living human eye , 2013, Proceedings of the National Academy of Sciences.

[49]  Eric A Newman,et al.  Functional Hyperemia and Mechanisms of Neurovascular Coupling in the Retinal Vasculature , 2013, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[50]  Zhongping Chen,et al.  Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. , 1997, Optics letters.

[51]  Bojana Stefanovic,et al.  Robust Quantification of Microvascular Transit Times via Linear Dynamical Systems using Two-Photon Fluorescence Microscopy Data , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[52]  Martin F. Kraus,et al.  Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT , 2011, Biomedical optics express.

[53]  Shuichi Makita,et al.  Optical coherence angiography for the eye , 2009 .