Systematic sampling with errors in sample locations

Systematic sampling of points in continuous space is widely used in microscopy and spatial surveys. Classical theory provides asymptotic expressions for the variance of estimators based on systematic sampling as the grid spacing decreases. However, the classical theory assumes that the sample grid is exactly periodic; real physical sampling procedures may introduce errors in the placement of the sample points. This paper studies the effect of errors in sample positioning on the variance of estimators in the case of one-dimensional systematic sampling. First we sketch a general approach to variance analysis using point process methods. We then analyze three different models for the error process, calculate exact expressions for the variances, and derive asymptotic variances. Errors in the placement of sample points can lead to substantial inflation of the variance, dampening of zitterbewegung, that is fluctuation effects, and a slower order of convergence. This suggests that the current practice in some areas of microscopy may be based on over-optimistic predictions of estimator accuracy. Copyright 2010, Oxford University Press.

[1]  R. Royall On finite population sampling theory under certain linear regression models , 1970 .

[2]  L M Cruz-Orive,et al.  Particle number can be estimated using a disector of unknown thickness: the selector. , 1987, Journal of microscopy.

[3]  M. García-Fiñana,et al.  Confidence intervals in Cavalieri sampling , 2006, Journal of microscopy.

[4]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[5]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[6]  Marta García-Fiñana,et al.  Improved variance prediction for systematic sampling on ℝ , 2004 .

[7]  P. Moran Statistical theory of a high-speed photoelectric planimeter , 1968 .

[8]  Luis M. Cruz-Orive,et al.  Variance prediction under systematic sampling with geometric probes , 1998, Advances in Applied Probability.

[9]  H. Steinhaus Length, shape and area , 1954 .

[10]  Jacques Istas,et al.  Precision of systematic sampling and transitive methods , 1999 .

[11]  G. Matheron Les variables régionalisées et leur estimation : une application de la théorie de fonctions aléatoires aux sciences de la nature , 1965 .

[12]  Zhuoxin Sun,et al.  The Influence of Chronic Exposure to Antipsychotic Medications on Brain Size before and after Tissue Fixation: A Comparison of Haloperidol and Olanzapine in Macaque Monkeys , 2005, Neuropsychopharmacology.

[13]  P. Moran Measuring the length of a curve , 1966 .

[14]  N Roberts,et al.  Vertical LM sectioning and parallel CT scanning designs for stereology: application to human lung , 1993, Journal of microscopy.

[15]  H. J. G. Gundersen,et al.  The new stereological tools: Disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis , 1988, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[16]  David A Lewis,et al.  Primary visual cortex volume and total neuron number are reduced in schizophrenia , 2007, The Journal of comparative neurology.

[17]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[18]  W. Rudin Real and complex analysis , 1968 .

[19]  A. E. Jones SYSTEMATIC SAMPLING OF CONTINUOUS PARAMETER POPULATIONS , 1948 .

[20]  W. R. Thompson,et al.  The Geometric Properties of Microscopic Configurations. II. Incidence and Volume of Islands of Langerhans in the Pancreas of a Monkey , 1932 .

[21]  H. Hahn Theorie und Anwendung der unendlichen Reihen , 1932 .

[22]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[23]  Luis M. Cruz-Orive,et al.  On the precision of systematic sampling: a review of Matheron's transitive methods , 1989 .

[24]  A note on the stereological implications of irregular spacing of sections , 2006, Journal of microscopy.

[25]  R. Nevanlinna Models for Point Processes Observed with Noise , 1998 .

[26]  Gerold Alsmeyer Die Hauptsätze der Erneuerungstheorie , 1991 .

[27]  D. C. Sterio The unbiased estimation of number and sizes of arbitrary particles using the disector , 1984, Journal of microscopy.

[28]  W. R. Thompson,et al.  THE GEOMETRIC PROPERTIES OF MICROSCOPIC CONFIGURATIONS. I. GENERAL ASPECTS OF PROJECTOMETRY , 1932 .

[29]  D. Lewis,et al.  Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus , 2005, The Journal of comparative neurology.

[30]  Dorph‐Petersen,et al.  Stereological estimation using vertical sections in a complex tissue , 1999, Journal of microscopy.

[31]  Ewald R. Weibel,et al.  The Non-Statistical Nature of Biological Structure and Its Implications on Sampling for Stereology , 1978 .

[33]  Adrian Baddeley,et al.  Stereology for Statisticians , 2004 .

[34]  M. García-Fiñana,et al.  FRACTIONAL TREND OF THE VARIANCE IN CAVALIERI SAMPLING , 2011 .

[35]  W. Weil,et al.  Stochastic and Integral Geometry , 2008 .