Fixed points of nonlinear sigma models in d > 2

Using Wilsonian methods, we study the renormalization group flow of the nonlinear sigma model in any dimension d, restricting our attention to terms with two derivatives. At one loop we always find a Ricci-type flow. When symmetries completely fix the internal metric, we compute the beta function of the single remaining coupling, without any further approximation. For d>2 and positive curvature, there is a nontrivial fixed point, which could be used to define an ultraviolet limit, in spite of the perturbative nonrenormalizability of the theory. Potential applications are briefly mentioned.

[1]  S. Ketov Quantum Non-linear Sigma-Models , 2000 .

[2]  K. Higashijima,et al.  Three Dimensional Nonlinear Sigma Models in the Wilsonian Renormalization Method , 2003 .

[3]  Heinrich Leutwyler,et al.  Chiral perturbation theory to one loop , 1984 .

[4]  I. Aref’eva,et al.  Renormalization and phase transition in the quantum ofCPN−1 model (D=2,3) , 1980 .

[5]  Jan Smit,et al.  Introduction to Quantum Fields on a Lattice , 2002 .

[6]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[7]  I. Aref’eva,et al.  Phase transition in the three-dimensional chiral field , 1979 .

[8]  M. Reuter,et al.  Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .

[9]  Chan Is the nonlinear sigma model the m sigma --> , 1987, Physical review. D, Particles and fields.

[10]  É. Brézin,et al.  Renormalization of the nonlinear sigma model in 2 + epsilon dimensions. Application to the Heisenberg ferromagnets , 1976 .

[11]  A. Polyakov Interaction of Goldstone Particles in Two-Dimensions. Applications to Ferromagnets and Massive Yang-Mills Fields , 1975 .

[12]  D. Litim Optimized renormalization group flows , 2001, hep-th/0103195.

[13]  P. Weisz,et al.  Is there A Strong Interaction Sector in the Standard Lattice Higgs Model , 1988 .

[14]  R. Percacci Further evidence for a gravitational fixed point , 2005, hep-th/0511177.

[15]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[16]  R. Percacci Geometry of nonlinear field theories , 1986 .

[17]  G. Bhanot,et al.  Microcanonical simulation of the four-dimensional SU(2) non-linear sigma model , 1992 .

[18]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[19]  Christoph Rahmede,et al.  ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.

[20]  D. Friedan,et al.  Nonlinear models in 2 + ε dimensions☆ , 1985 .

[21]  Frank Saueressig,et al.  On the Renormalization Group Flow of Gravity , 2007, 0712.0445.

[22]  Roberto Percacci,et al.  Fixed points of higher-derivative gravity. , 2006, Physical review letters.

[23]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[24]  G. Papadopoulos,et al.  The background field method and the non-linear σ-model , 1988 .

[25]  D. Freedman,et al.  The background field method and the ultraviolet structure of the supersymmetric nonlinear σ-model , 1981 .

[26]  J. Honerkamp Chiral multi-loops , 1972 .

[27]  Robert Shrock,et al.  Phase Transition in the Nonlinear Sigma Model in Two + Epsilon Dimensional Continuum , 1976 .

[28]  D. Friedan,et al.  NONLINEAR MODELS IN 2 +<-DIMENSIONS , 1980 .

[29]  C. Wetterich,et al.  Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .