Cost effective assay choice for rare disease study designs

[1]  Xiaolin Zhu,et al.  An Evaluation of Copy Number Variation Detection Tools from Whole‐Exome Sequencing Data , 2014, Human mutation.

[2]  L. Vissers,et al.  Genome sequencing identifies major causes of severe intellectual disability , 2014, Nature.

[3]  E. Merello,et al.  Novel MNX1 mutations and clinical analysis of familial and sporadic Currarino cases. , 2013, European journal of medical genetics.

[4]  B. Giusti,et al.  EXCAVATOR: detecting copy number variants from whole-exome sequencing data , 2013, Genome Biology.

[5]  K. Boycott,et al.  Rare-disease genetics in the era of next-generation sequencing: discovery to translation , 2013, Nature Reviews Genetics.

[6]  D. Jordan,et al.  Large Numbers of Genetic Variants Considered to be Pathogenic are Common in Asymptomatic Individuals , 2013, Human mutation.

[7]  K. Yamamura,et al.  Etiology of Caudal Regression Syndrome , 2013 .

[8]  B. V. van Bon,et al.  Diagnostic exome sequencing in persons with severe intellectual disability. , 2012, The New England journal of medicine.

[9]  Peter H. Sudmant,et al.  Estimating human mutation rate using autozygosity in a founder population , 2012, Nature genetics.

[10]  Nicholas W. Wood,et al.  A robust model for read count data in exome sequencing experiments and implications for copy number variant calling , 2012, Bioinform..

[11]  Bradley P. Coe,et al.  Copy number variation detection and genotyping from exome sequence data , 2012, Genome research.

[12]  Jason Li,et al.  CONTRA: copy number analysis for targeted resequencing , 2012, Bioinform..

[13]  C. Kimchi-Sarfaty,et al.  Understanding the contribution of synonymous mutations to human disease , 2011, Nature Reviews Genetics.

[14]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[15]  Deborah A Nickerson,et al.  De novo rates and selection of large copy number variation. , 2010, Genome research.

[16]  Tomas W. Fitzgerald,et al.  Origins and functional impact of copy number variation in the human genome , 2010, Nature.

[17]  M. Goossens,et al.  Review and update of mutations causing Waardenburg syndrome , 2010, Human mutation.

[18]  F. Collins,et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.

[19]  Steve D. M. Brown,et al.  VACTERL/caudal regression/Currarino syndrome-like malformations in mice with mutation in the proprotein convertase Pcsk5. , 2008, Genes & development.

[20]  M. Jaworek,et al.  Caudal regression syndrome associated with the white matter lesions and chromosome 18p11.2 deletion , 2007, Brain and Development.

[21]  J. Emery,et al.  How can the evaluation of genetic tests be enhanced? Lessons learned from the ACCE framework and evaluating genetic tests in the United Kingdom , 2005, Genetics in Medicine.

[22]  E. Castilla,et al.  VACTERL association, epidemiologic definition and delineation. , 1996, American journal of medical genetics.

[23]  J. Mills Malformations in infants of diabetic mothers. , 1982, Teratology.

[24]  R. Bolande The neurocristopathies: A unifying concept of disease arising in neural crest maldevelopment , 1974 .

[25]  K. Rothman Reviews and Commentary CAUSES , 2022 .

[26]  Pieter B. T. Neerincx,et al.  Supplementary Information Whole-genome sequence variation , population structure and demographic history of the Dutch population , 2022 .