Automatic loop-shaping of QFT robust controllers

This paper introduces a methodology to design automatically QFT (Quantitative Feedback Theory) robust controllers for SISO (single input-single output) plants with model uncertainty. The method generalizes previous automatic loop-shaping techniques, avoiding restrictive assumptions about the search space. This methodology applies two strategies: a) Evolutionary Algorithms, and b) Genetic Algorithms (GA). In both cases the objective is to search the QFT robust controller that fulfils the control specifications for the whole set of plant models within the uncertainty. Each strategy has been applied to a benchmark in order to validate the techniques.

[1]  Mario Garcia-Sanz,et al.  NON-DIAGONAL MULTIVARIABLE ROBUST QFT CONTROL OF A WASTEWATER TREATMENT PLANT FOR SIMULTANEOUS NITROGEN AND PHOSPHORUS REMOVAL , 2006 .

[2]  Mario Garcia-Sanz,et al.  Beyond the linear limitations by combining switching and QFT: Application to wind turbines pitch control systems , 2009 .

[3]  Christopher V. Hollot,et al.  Automatic loop-shaping of QFT controllers via linear programming , 1999 .

[4]  Osita D. I. Nwokah,et al.  Analytic Loop Shaping Methods in Quantitative Feedback Theory , 1994 .

[5]  Isaac Horowitz,et al.  Quantitative feedback design theory : QFT , 1993 .

[6]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[7]  Richard R. Sating Development of an Analog MIMO Quantitative Feedback Theory (QFT) CAD Package , 1992 .

[8]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[9]  Steven J. Rasmussen,et al.  MIMO QFT Cad Package , 2005 .

[10]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[11]  Wen-Hua Chen,et al.  Automatic loop-shaping in QFT using genetic algorithms , 1998 .

[12]  Oded Yaniv,et al.  Multi-input/single-output computer-aided control design using the quantitative feedback theory , 1993 .

[13]  Samir Bennani,et al.  FULL-MATRIX INVERSE-BASED MIMO QFT CONTROL DESIGN FOR SPACECRAFT FLYING IN FORMATION , 2007 .

[14]  I. Horowitz Survey of quantitative feedback theory (QFT) , 2001 .

[15]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[16]  Anne Brindle,et al.  Genetic algorithms for function optimization , 1980 .

[17]  G. Bryant,et al.  Optimal loop-shaping for systems with large parameter uncertainty via linear programming , 1995 .

[18]  Xin Yao,et al.  Evolutionary Optimization , 2002 .

[19]  Mario Garcia-Sanz,et al.  Nondiagonal QFT Controller Design for a Three-Input Three-Output Industrial Furnace , 2006 .

[20]  Steven J. Rasmussen,et al.  Quantitative Feedback Theory: Fundamentals and Applications, Second Edition , 2005 .

[21]  Steven J. Rasmussen,et al.  Quantitative feedback theory: fundamentals and applications: C. H. Houpis and S. J. Rasmussen; Marcel Dekker, New York, 1999, ISBN: 0-8247-7872-3 , 2001, Autom..

[22]  Isaac Horowitz,et al.  Optimum loop transfer function in single-loop minimum-phase feedback systems† , 1973 .

[23]  I. Horowitz,et al.  Synthesis of feedback systems with large plant ignorance for prescribed time-domain tolerances† , 1972 .

[24]  I. Horowitz,et al.  Optimization of the loop transfer function , 1980 .

[25]  Paluri S. V. Nataraj,et al.  An Interval Analysis Algorithm for Automated Controller Synthesis in QFT Designs , 2007 .

[26]  David F. Thompson Gain-Bandwidth Optimal Design for the New Formulation Quantitative Feedback Theory , 1998 .

[27]  I. Horowitz Invited paper Survey of quantitative feedback theory (QFT) , 1991 .

[28]  Samir Bennani,et al.  Nondiagonal MIMO QFT Controller Design for Darwin-Type Spacecraft With Large Flimsy Appendages , 2008 .

[29]  John H. Blakelock,et al.  Automatic control of aircraft and missiles , 1965 .

[30]  A. E. Eiben Genetic algorithms + data structures = evolution programs: Z. Michalewicz. Springer, Berlin, 1996, 3rd revised and extended edition (1st edition appeared in 1992), 387 pp. (hardcover), 68 figures, 36 tables, price DM 58 , 1997 .

[31]  Mario Garcia-Sanz,et al.  Automatic Loop-Shaping of QFT Robust Controllers Via Genetic Algorithms , 2000 .

[32]  Peter J. Gawthrop,et al.  Control systems design via a quantitative feedback theory approach , 1991 .

[33]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[34]  Wen-Hua Chen,et al.  Genetic algorithm enabled computer-automated design of QFT control systems , 1999, Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No.99TH8404).

[35]  Samir Bennani,et al.  Non‐diagonal MIMO QFT controller design reformulation , 2009 .

[36]  M. Garcia-Sanz,et al.  QFT robust control of a Vega-type space launcher , 2008, 2008 16th Mediterranean Conference on Control and Automation.