문장구조 유사도와 단어 유사도를 이용한 클러스터링 기반의 통계기계번역
暂无分享,去创建一个
통계기계번역에서 번역성능의 향상을 위해서 문장의 유형이나 장르에 따라 클러스터링을 수행하여 도메인에 특화된 번역을 시도하는 방법이 있다. 그러나 기존의 연구 중 문장의 유형 정보와 장르에 따른 정보를 동시에 사용한 경우는 없었다. 본 논문에서는 각 문장의 문법적 구조 유사도에 따른 유형별분류 기법과, 단어 유사도 정보를 사용한 장르 구분법을 적용하여 기존의 두 기법을 통합하였다. 이렇게 분류된 말뭉치에서 추출한 도메인 특화 모델과 전체 말뭉치에서 추출된 모델에서 보간법(interpolation)을 사용하여 통계기계번역의 성능을 향상하였다. 문장구조 유사도와 단어 유사도의 계산 방법으로는 각각 커널과 코사인 유사도를 적용하였으며, 두 유사도를 적용하여 말뭉치를 분류하는 과정에서는 K-Means 알고리즘과 유사한 기계학습 기법을 사용하였다. 이를 일본어-영어의 특허문서에서 실험한 결과 최선의 경우 약 2.5%의 상대적인 성능 향상을 얻었다.