Scaling Law Describes the Spin-Glass Response in Theory, Experiments, and Simulations.
暂无分享,去创建一个
G. Parisi | E. Marinari | F. Ricci-Tersenghi | B. Seoane | E. Calore | A. Tarancón | M. Baity-Jesi | V. Martin-Mayor | R. Orbach | D. Yllanes | Q. Zhai | L. A. Fernández | A. Maiorano | J. Moreno-Gordo | J. Ruiz-Lorenzo | R. Tripiccione | A. Cruz | J. M. Gil-Narvión | A. Gordillo-Guerrero | D. Iñiguez | D. Navarro | S. Perez-Gaviro | S. Schifano | A. Muñoz-Sudupe | I. Paga | I. González-Adalid Pemartín | D. Schlagel
[1] Danna Zhou,et al. d. , 1840, Microbial pathogenesis.
[2] S. F. Schifano,et al. An In-Depth View of the Microscopic Dynamics of Ising Spin Glasses at Fixed Temperature , 2008, 0811.2864.
[3] E. Marinari,et al. Dimensional crossover in the aging dynamics of spin glasses in a film geometry , 2019, Physical Review B.
[4] J. Herskowitz,et al. Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.
[5] Fisher,et al. Scaling in spin-glasses. , 1985, Physical review letters.
[6] G. Parisi,et al. Nonequilibrium spin-glass dynamics from picoseconds to a tenth of a second. , 2008, Physical review letters.
[7] G. Parisi,et al. Matching Microscopic and Macroscopic Responses in Glasses. , 2017, Physical review letters.
[8] G. Parisi,et al. Critical parameters of the three-dimensional Ising spin glass , 2013, 1310.2910.
[9] G. Parisi,et al. Numerical study of barriers and valleys in the free-energy landscape of spin glasses , 2018, Journal of Physics A: Mathematical and Theoretical.
[10] D. Bailin. Field theory , 1979, Nature.
[11] Giorgio Parisi,et al. Fractal free energy landscapes in structural glasses , 2014, Nature Communications.
[12] R. Orbach,et al. Direct dynamical evidence for the spin glass lower critical dimension 2 , 2014, Physical review letters.
[13] G. Parisi,et al. Out-of-equilibrium finite-size method for critical behavior analyses. , 2015, Physical review. E.
[14] J. Bouchaud,et al. Spin anisotropy and slow dynamics in spin glasses. , 2004, Physical review letters.
[15] Hammann,et al. Aging in spin glasses as a random walk: Effect of a magnetic field. , 1995, Physical review. B, Condensed matter.
[16] R. Orbach,et al. End of aging as a probe of finite-size effects near the spin-glass transition temperature , 2018, Physical Review B.
[17] Andrea Cavagna,et al. Supercooled liquids for pedestrians , 2009, 0903.4264.
[18] L. Peliti,et al. Measuring Equilibrium Properties in Aging Systems , 1998, cond-mat/9803108.
[19] R. Orbach,et al. Full aging in spin glasses. , 2002, Physical review letters.
[20] P. Nordblad,et al. Linear Response in Spin Glasses , 1995 .
[21] Antonio-José Almeida,et al. NAT , 2019, Springer Reference Medizin.
[22] G. Adam,et al. On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids , 1965 .
[23] G. Parisi,et al. A statics-dynamics equivalence through the fluctuation–dissipation ratio provides a window into the spin-glass phase from nonequilibrium measurements , 2016, Proceedings of the National Academy of Sciences.
[24] G. Parisi,et al. Static versus dynamic heterogeneities in the D = 3 Edwards-Anderson-Ising spin glass. , 2010, Physical review letters.
[25] A. Young,et al. Nonequilibrium evolution of window overlaps in spin glasses , 2015, 1501.06760.
[26] V. Martin-Mayor,et al. Testing statics-dynamics equivalence at the spin-glass transition in three dimensions , 2014, 1412.4645.
[27] Cugliandolo,et al. Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model. , 1993, Physical review letters.
[28] G. Parisi,et al. Violation of the fluctuation-dissipation theorem in finite-dimensional spin glasses , 1997, cond-mat/9710120.
[29] A. Hartmann,et al. Aging at the spin-glass/ferromagnet transition: Monte Carlo simulations using graphics processing units , 2014, 1411.5512.
[30] G. G. Wood,et al. EXTRACTION OF THE SPIN GLASS CORRELATION LENGTH , 1998, cond-mat/9809246.
[31] C. Weißer. F. , 2018, Industrial and Labor Relations Terms.
[32] 小谷 正雄. 日本物理学会誌及びJournal of the Physical Society of Japanの月刊について , 1955 .
[33] R. Orbach,et al. Magnetic Field Dependence of Spin Glass Free Energy Barriers. , 2017, Physical review letters.
[34] A. Ito,et al. Experimental Study of the de Almeida-Thouless Line by Using Typical Ising Spin-Glass FexMn1-xTiO3 with x = 0.41, 0.50, 0.55 and 0.57 , 1994 .
[35] G. Parisi,et al. Aging Rate of Spin Glasses from Simulations Matches Experiments. , 2018, Physical review letters.
[36] 友紀子 中川. SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.
[37] V. Martin-Mayor,et al. Slowing down of spin glass correlation length growth: Simulations meet experiments , 2019, Physical Review B.
[38] Denis Navarro,et al. Janus II: A new generation application-driven computer for spin-system simulations , 2013, Comput. Phys. Commun..
[39] Parisi,et al. Numerical evidence for spontaneously broken replica symmetry in 3D spin glasses. , 1996, Physical review letters.