Scaling Law Describes the Spin-Glass Response in Theory, Experiments, and Simulations.

The correlation length ξ, a key quantity in glassy dynamics, can now be precisely measured for spin glasses both in experiments and in simulations. However, known analysis methods lead to discrepancies either for large external fields or close to the glass temperature. We solve this problem by introducing a scaling law that takes into account both the magnetic field and the time-dependent spin-glass correlation length. The scaling law is successfully tested against experimental measurements in a CuMn single crystal and against large-scale simulations on the Janus II dedicated computer.

[1]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[2]  S. F. Schifano,et al.  An In-Depth View of the Microscopic Dynamics of Ising Spin Glasses at Fixed Temperature , 2008, 0811.2864.

[3]  E. Marinari,et al.  Dimensional crossover in the aging dynamics of spin glasses in a film geometry , 2019, Physical Review B.

[4]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[5]  Fisher,et al.  Scaling in spin-glasses. , 1985, Physical review letters.

[6]  G. Parisi,et al.  Nonequilibrium spin-glass dynamics from picoseconds to a tenth of a second. , 2008, Physical review letters.

[7]  G. Parisi,et al.  Matching Microscopic and Macroscopic Responses in Glasses. , 2017, Physical review letters.

[8]  G. Parisi,et al.  Critical parameters of the three-dimensional Ising spin glass , 2013, 1310.2910.

[9]  G. Parisi,et al.  Numerical study of barriers and valleys in the free-energy landscape of spin glasses , 2018, Journal of Physics A: Mathematical and Theoretical.

[10]  D. Bailin Field theory , 1979, Nature.

[11]  Giorgio Parisi,et al.  Fractal free energy landscapes in structural glasses , 2014, Nature Communications.

[12]  R. Orbach,et al.  Direct dynamical evidence for the spin glass lower critical dimension 2 , 2014, Physical review letters.

[13]  G. Parisi,et al.  Out-of-equilibrium finite-size method for critical behavior analyses. , 2015, Physical review. E.

[14]  J. Bouchaud,et al.  Spin anisotropy and slow dynamics in spin glasses. , 2004, Physical review letters.

[15]  Hammann,et al.  Aging in spin glasses as a random walk: Effect of a magnetic field. , 1995, Physical review. B, Condensed matter.

[16]  R. Orbach,et al.  End of aging as a probe of finite-size effects near the spin-glass transition temperature , 2018, Physical Review B.

[17]  Andrea Cavagna,et al.  Supercooled liquids for pedestrians , 2009, 0903.4264.

[18]  L. Peliti,et al.  Measuring Equilibrium Properties in Aging Systems , 1998, cond-mat/9803108.

[19]  R. Orbach,et al.  Full aging in spin glasses. , 2002, Physical review letters.

[20]  P. Nordblad,et al.  Linear Response in Spin Glasses , 1995 .

[21]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[22]  G. Adam,et al.  On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids , 1965 .

[23]  G. Parisi,et al.  A statics-dynamics equivalence through the fluctuation–dissipation ratio provides a window into the spin-glass phase from nonequilibrium measurements , 2016, Proceedings of the National Academy of Sciences.

[24]  G. Parisi,et al.  Static versus dynamic heterogeneities in the D = 3 Edwards-Anderson-Ising spin glass. , 2010, Physical review letters.

[25]  A. Young,et al.  Nonequilibrium evolution of window overlaps in spin glasses , 2015, 1501.06760.

[26]  V. Martin-Mayor,et al.  Testing statics-dynamics equivalence at the spin-glass transition in three dimensions , 2014, 1412.4645.

[27]  Cugliandolo,et al.  Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model. , 1993, Physical review letters.

[28]  G. Parisi,et al.  Violation of the fluctuation-dissipation theorem in finite-dimensional spin glasses , 1997, cond-mat/9710120.

[29]  A. Hartmann,et al.  Aging at the spin-glass/ferromagnet transition: Monte Carlo simulations using graphics processing units , 2014, 1411.5512.

[30]  G. G. Wood,et al.  EXTRACTION OF THE SPIN GLASS CORRELATION LENGTH , 1998, cond-mat/9809246.

[31]  C. Weißer F. , 2018, Industrial and Labor Relations Terms.

[32]  小谷 正雄 日本物理学会誌及びJournal of the Physical Society of Japanの月刊について , 1955 .

[33]  R. Orbach,et al.  Magnetic Field Dependence of Spin Glass Free Energy Barriers. , 2017, Physical review letters.

[34]  A. Ito,et al.  Experimental Study of the de Almeida-Thouless Line by Using Typical Ising Spin-Glass FexMn1-xTiO3 with x = 0.41, 0.50, 0.55 and 0.57 , 1994 .

[35]  G. Parisi,et al.  Aging Rate of Spin Glasses from Simulations Matches Experiments. , 2018, Physical review letters.

[36]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.

[37]  V. Martin-Mayor,et al.  Slowing down of spin glass correlation length growth: Simulations meet experiments , 2019, Physical Review B.

[38]  Denis Navarro,et al.  Janus II: A new generation application-driven computer for spin-system simulations , 2013, Comput. Phys. Commun..

[39]  Parisi,et al.  Numerical evidence for spontaneously broken replica symmetry in 3D spin glasses. , 1996, Physical review letters.