Maltsev + Datalog --≫ Symmetric Datalog

Let B be a finite, core relational structure and let A be the algebra associated to B, i.e. whose terms are the operations on the universe of B that preserve the relations of B. We show that if A generates a so-called arithmetical variety then CSP(B), the constraint satisfaction problem associated to B, is solvable in Logspace; in fact notCSP(B) is expressible in symmetric Datalog. In particular, we obtain that notCSP(B) is expressible in Datalog and the relations of B are invariant under a Maltsev operation then notCSP(B) is in symmetric Datalog.

[1]  Miklós Maróti,et al.  CD(4) has bounded width , 2007, ArXiv.

[2]  Pawel M. Idziak,et al.  Tractability and Learnability Arising from Algebras with Few Subpowers , 2010, SIAM J. Comput..

[3]  Fenguangzhai Song CD , 1992 .

[4]  Pascal Tesson,et al.  Universal algebra and hardness results for constraint satisfaction problems , 2009, Theor. Comput. Sci..

[5]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[6]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraints on a three-element set , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[7]  Víctor Dalmau,et al.  Linear datalog and bounded path duality of relational structures , 2005, Log. Methods Comput. Sci..

[8]  A. Pixley,et al.  Distributivity and permutability of congruence relations in equational classes of algebras , 1963 .

[9]  Leonid Libkin,et al.  Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.

[10]  Phokion G. Kolaitis,et al.  Constraint Satisfaction, Bounded Treewidth, and Finite-Variable Logics , 2002, CP.

[11]  Pascal Tesson,et al.  Symmetric Datalog and Constraint Satisfaction Problems in Logspace , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[12]  Andrei A. Krokhin,et al.  Majority constraints have bounded pathwidth duality , 2008, Eur. J. Comb..

[13]  Pascal Tesson,et al.  Universal algebra and hardness results for constraint satisfaction problems , 2007, Theor. Comput. Sci..

[14]  B. Larose,et al.  Bounded width problems and algebras , 2007 .

[15]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[16]  Peter Jeavons,et al.  The Complexity of Constraint Languages , 2006, Handbook of Constraint Programming.

[17]  Andrei A. Bulatov,et al.  A Simple Algorithm for Mal'tsev Constraints , 2006, SIAM J. Comput..

[18]  R. Dechter to Constraint Satisfaction , 1991 .

[19]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[20]  K. A. Baker,et al.  Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems , 1975 .

[21]  D. Hobby,et al.  The structure of finite algebras , 1988 .