Minimum population search - Lessons from building a heuristic technique with two population members

Population-based heuristics can be effective at optimizing difficult multi-modal problems. However, population size has to be selected correctly to achieve the best results. Searching with a smaller population increases the chances of convergence and the efficient use of function evaluations, but it also induces the risk of premature convergence. Larger populations can reduce this risk but can cause poor efficiency. This paper presents a new method specifically designed to work with very small populations. Computational results show that this new heuristic can achieve the benefits of smaller populations and largely avoid the risk of premature convergence.

[1]  Antonio Bolufé Röhler,et al.  Multi-swarm hybrid for multi-modal optimization , 2012, 2012 IEEE Congress on Evolutionary Computation.

[2]  Frans van den Bergh,et al.  A NICHING PARTICLE SWARM OPTIMIZER , 2002 .

[3]  Sheng Chen,et al.  Particle swarm optimization with thresheld convergence , 2013, 2013 IEEE Congress on Evolutionary Computation.

[4]  Carlos A. Coello Coello,et al.  Micro-MOPSO: A Multi-Objective Particle Swarm Optimizer That Uses a Very Small Population Size , 2010, Multi-Objective Swarm Intelligent System.

[5]  Fred W. Glover,et al.  Tabu Search , 1997, Handbook of Heuristics.

[6]  Janez Brest,et al.  High-dimensional real-parameter optimization using Self-Adaptive Differential Evolution algorithm with population size reduction , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[7]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[8]  Antonio Bolufé Röhler,et al.  Differential evolution with thresheld convergence , 2013, 2013 IEEE Congress on Evolutionary Computation.

[9]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[10]  David E. Goldberg,et al.  Bayesian Optimization Algorithm, Population Sizing, and Time to Convergence , 2000, GECCO.

[11]  James Kennedy,et al.  Defining a Standard for Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[12]  Colin R. Reeves,et al.  Using Genetic Algorithms with Small Populations , 1993, ICGA.

[13]  Zhijian Wu,et al.  Sequential DE enhanced by neighborhood search for Large Scale Global Optimization , 2010, IEEE Congress on Evolutionary Computation.

[14]  René Thomsen,et al.  Multimodal optimization using crowding-based differential evolution , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[15]  Jing J. Liang,et al.  Dynamic multi-swarm particle swarm optimizer , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[16]  Yi Hong,et al.  Over-Selection: An attempt to boost EDA under small population size , 2007, 2007 IEEE Congress on Evolutionary Computation.

[17]  Graham Kendall,et al.  Hyper-Heuristics: An Emerging Direction in Modern Search Technology , 2003, Handbook of Metaheuristics.

[18]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[19]  Antonio Bolufé Röhler,et al.  An Analysis of Sub-swarms in Multi-swarm Systems , 2011, Australasian Conference on Artificial Intelligence.

[20]  James Montgomery,et al.  Simulated annealing with thresheld convergence , 2012, 2012 IEEE Congress on Evolutionary Computation.

[21]  Hideyuki Takagi,et al.  Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation , 2001, Proc. IEEE.

[22]  Anne Auger,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .

[23]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[24]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[25]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[26]  Kalyanmoy Deb,et al.  Understanding Interactions among Genetic Algorithm Parameters , 1998, FOGA.