A Linear High-Efficiency Millimeter-Wave CMOS Doherty Radiator Leveraging Multi-Feed On-Antenna Active Load Modulation

This paper presents a Doherty radiator architecture that explores multi-feed antennas to achieve an on-antenna Doherty load modulation network and demonstrates high-speed high-efficiency transmission of wideband modulated signals. On the passive circuits, we exploit the multi-feed antenna concept to realize compact and high-efficiency on-antenna active load modulation for close-to-ideal Doherty operation, on-antenna power combining, and millimeter-wave (mm-Wave) signal radiation. Moreover, we analyze the far-field transmission of the proposed Doherty radiator and demonstrate its wide field of view (FoV). On the active circuits, we employ a gigahertz-bandwidth adaptive biasing at the Doherty auxiliary power amplifier (PA) path to enhance the main/auxiliary Doherty cooperation and appropriate turning-on/-off of the auxiliary path. A proof-of-concept Doherty radiator implemented in a 45-nm CMOS silicon on insulator (SOI) process over 62–68 GHz exhibits a consistent 1.45<inline-formula> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula>–1.53<inline-formula> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> PAE enhancement at 6-dB power backoff (PBO) over an idealistic class-B PA with the same PAE at <inline-formula> <tex-math notation="LaTeX">$P_{\mathrm {1\,dB}}$ </tex-math></inline-formula>. The measured continuous-wave performance at 65 GHz demonstrates 19.4/19.2-dBm <inline-formula> <tex-math notation="LaTeX">$P_{\mathrm {SAT}}/P_{\mathrm {1\,dB}}$ </tex-math></inline-formula> and achieves 27.5%/20.1% PAE at peak/6-dB PBO, respectively. For single-carrier 1 Gsym/s 64- quadratic-amplitude modulation (QAM), the Doherty radiator shows average output power of 14.2 dBm with an average 20.2% PAE and −26.7-dB error vector magnitude (EVM) without digital pre-distortion. Consistent EVMs are observed over the entire antenna FoV, demonstrating spatially undistorted transmission and constant Doherty PBO efficiency enhancement.

[1]  H. Chireix High Power Outphasing Modulation , 1935, Proceedings of the Institute of Radio Engineers.

[2]  James F. Buckwalter,et al.  A PMOS mm-wave power amplifier at 77 GHz with 90 mW output power and 24% efficiency , 2016, 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[3]  Harish Krishnaswamy,et al.  High-Power High-Efficiency Class-E-Like Stacked mmWave PAs in SOI and Bulk CMOS: Theory and Implementation , 2014, IEEE Transactions on Microwave Theory and Techniques.

[4]  Thomas Zwick,et al.  Circuit building blocks for efficient in-antenna power combining at 240 GHz with non-50 Ohm amplifier matching impedance , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[5]  Bumman Kim,et al.  Linearization of CMOS Cascode Power Amplifiers Through Adaptive Bias Control , 2013, IEEE Transactions on Microwave Theory and Techniques.

[6]  Harish Krishnaswamy,et al.  Large-Scale Power Combining and Mixed-Signal Linearizing Architectures for Watt-Class mmWave CMOS Power Amplifiers , 2015, IEEE Transactions on Microwave Theory and Techniques.

[7]  Patrick Reynaert,et al.  A 60-GHz Dual-Mode Class AB Power Amplifier in 40-nm CMOS , 2013, IEEE Journal of Solid-State Circuits.

[8]  G. Freeman,et al.  Performance of V-Band On-Chip Antennas in GlobalFoundries 45nm CMOS SOI Process for Mm-Wave 5G Applications , 2018, 2018 IEEE/MTT-S International Microwave Symposium - IMS.

[9]  Peter M. Asbeck,et al.  Voltage Mode Doherty Power Amplifier , 2017, IEEE Journal of Solid-State Circuits.

[10]  Christian Fager,et al.  Symmetrical Doherty Power Amplifier With Extended Efficiency Range , 2016, IEEE Transactions on Microwave Theory and Techniques.

[11]  A. Grebennikov,et al.  A Dual-Band Parallel Doherty Power Amplifier for Wireless Applications , 2012, IEEE Transactions on Microwave Theory and Techniques.

[12]  Sungho Lee,et al.  A CMOS Outphasing Power Amplifier With Integrated Single-Ended Chireix Combiner , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[13]  Yucheng Liu,et al.  Design and Linearization of Concurrent Dual-Band Doherty Power Amplifier With Frequency-Dependent Power Ranges , 2011, IEEE Transactions on Microwave Theory and Techniques.

[14]  Gabriel M. Rebeiz,et al.  A Low-Cost Scalable 32-Element 28-GHz Phased Array Transceiver for 5G Communication Links Based on a $2\times 2$ Beamformer Flip-Chip Unit Cell , 2018, IEEE Journal of Solid-State Circuits.

[15]  Asad A. Abidi,et al.  An Outphasing Power Amplifier for a Software-Defined Radio Transmitter , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[16]  Yi Zhao,et al.  A Wideband, Dual-Path, Millimeter-Wave Power Amplifier With 20 dBm Output Power and PAE Above 15% in 130 nm SiGe-BiCMOS , 2012, IEEE Journal of Solid-State Circuits.

[17]  Kaushik Sengupta,et al.  RF and mm-Wave Power Generation in Silicon , 2015 .

[18]  Slim Boumaiza,et al.  Reconfigurable Doherty Power Amplifier for Multifrequency Wireless Radio Systems , 2013, IEEE Transactions on Microwave Theory and Techniques.

[19]  Hossein Hashemi,et al.  Watt-Level mm-Wave Power Amplification With Dynamic Load Modulation in a SiGe HBT Digital Power Amplifier , 2017, IEEE Journal of Solid-State Circuits.

[20]  Kaushik Sengupta,et al.  A digital mm-Wave PA architecture with Simultaneous Frequency and back-off Reconfigurability , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[21]  Taylor W. Barton,et al.  Multi-Way Lossless Outphasing System Based on an All-Transmission-Line Combiner , 2016, IEEE Transactions on Microwave Theory and Techniques.

[22]  Ali Hajimiri,et al.  Fully integrated CMOS power amplifier design using the distributed active-transformer architecture , 2002, IEEE J. Solid State Circuits.

[23]  Kaushik Sengupta,et al.  A 0.28 THz Power-Generation and Beam-Steering Array in CMOS Based on Distributed Active Radiators , 2012, IEEE Journal of Solid-State Circuits.

[24]  Amit Singh,et al.  A fully integrated scalable W-band phased-array module with integrated antennas, self-alignment and self-test , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[25]  Behzad Razavi,et al.  Transmitter Linearization by Beamforming , 2011, IEEE Journal of Solid-State Circuits.

[26]  Peter M. Asbeck,et al.  Multi-Drive Stacked-FET Power Amplifiers at 90 GHz in 45 nm SOI CMOS , 2014, IEEE Journal of Solid-State Circuits.

[27]  P. Asbeck,et al.  Efficiency Enhancement of mm-Wave Power Amplifiers Using Envelope Tracking , 2011, IEEE Microwave and Wireless Components Letters.

[28]  Ali Hajimiri,et al.  Distributed active transformer-a new power-combining and impedance-transformation technique , 2002 .

[29]  Kaushik Sengupta,et al.  Frequency Reconfigurable mm-Wave Power Amplifier With Active Impedance Synthesis in an Asymmetrical Non-Isolated Combiner: Analysis and Design , 2017, IEEE Journal of Solid-State Circuits.

[30]  John D. Cressler,et al.  A low-power and ultra-compact W-band transmitter front-end in 90 nm SiGe BiCMOS technology , 2014, 2014 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM).

[31]  Duixian Liu,et al.  A Fully-Integrated 16-Element Phased-Array Receiver in SiGe BiCMOS for 60-GHz Communications , 2010, IEEE Journal of Solid-State Circuits.

[32]  Christian Fager,et al.  A Doherty Power Amplifier Design Method for Improved Efficiency and Linearity , 2016, IEEE Transactions on Microwave Theory and Techniques.

[33]  Voravit Vorapipat,et al.  A Class-G Voltage-Mode Doherty Power Amplifier , 2017, IEEE Journal of Solid-State Circuits.

[34]  Zoya Popovic,et al.  ET Comes of Age: Envelope Tracking for Higher-Efficiency Power Amplifiers , 2016, IEEE Microwave Magazine.

[35]  Ali M. Niknejad,et al.  A digitally modulated mm-Wave cartesian beamforming transmitter with quadrature spatial combining , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[36]  Hua Wang,et al.  A 64GHz full-duplex transceiver front-end with an on-chip multifeed self-interference-canceling antenna and an all-passive canceler supporting 4Gb/s modulation in one antenna footprint , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[37]  Patrick Reynaert,et al.  A 60-GHz Outphasing Transmitter in 40-nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[38]  Hua Wang,et al.  A Multifeed Antenna for High-Efficiency On-Antenna Power Combining , 2017, IEEE Transactions on Antennas and Propagation.

[39]  A. Hajimiri,et al.  Dynamic Polarization Control of Two-Dimensional Integrated Phased Arrays , 2016, IEEE Transactions on Microwave Theory and Techniques.

[40]  Zoya Popovic,et al.  Amping Up the PA for 5G: Efficient GaN Power Amplifiers with Dynamic Supplies , 2017, IEEE Microwave Magazine.

[41]  Payam Heydari,et al.  Analysis and Design of a Millimeter-Wave Cavity-Backed Circularly Polarized Radiator Based on Fundamental Theory of Multi-Port Oscillators , 2017, IEEE Journal of Solid-State Circuits.

[42]  Chunshu Li,et al.  Digitally Modulated CMOS Polar Transmitters for Highly-Efficient mm-Wave Wireless Communication , 2016, IEEE Journal of Solid-State Circuits.

[43]  Vladimir Aparin,et al.  A 28GHz Bulk-CMOS dual-polarization phased-array transceiver with 24 channels for 5G user and basestation equipment , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[44]  Hua Wang,et al.  Antenna Impedance Variation Compensation by Exploiting a Digital Doherty Power Amplifier Architecture , 2015, IEEE Transactions on Microwave Theory and Techniques.

[45]  SungWon Chung,et al.  A 2.4-GHz, 27-dBm Asymmetric Multilevel Outphasing Power Amplifier in 65-nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[46]  Ali Hajimiri,et al.  An Integrated Slot-Ring Traveling-Wave Radiator , 2015, IEEE Transactions on Microwave Theory and Techniques.

[47]  A. Hajimiri,et al.  A Wideband 77-GHz, 17.5-dBm Fully Integrated Power Amplifier in Silicon , 2006, IEEE Journal of Solid-State Circuits.

[48]  Hua Wang,et al.  Design of A Transformer-Based Reconfigurable Digital Polar Doherty Power Amplifier Fully Integrated in Bulk CMOS , 2015, IEEE Journal of Solid-State Circuits.

[49]  Stefano Pellerano,et al.  A CMOS Wideband Current-Mode Digital Polar Power Amplifier With Built-In AM–PM Distortion Self-Compensation , 2018, IEEE Journal of Solid-State Circuits.

[50]  Hua Wang,et al.  Mixed-signal Doherty power amplifiers in CMOS , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[51]  Fei Wang,et al.  Towards Energy-Efficient 5G Mm-Wave links: Exploiting broadband Mm-Wave doherty power amplifier and multi-feed antenna with direct on-antenna power combining , 2017, 2017 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM).

[52]  Gabriel M. Rebeiz,et al.  60-GHz 64- and 256-Elements Wafer-Scale Phased-Array Transmitters Using Full-Reticle and Subreticle Stitching Techniques , 2016, IEEE Transactions on Microwave Theory and Techniques.

[53]  Yanjie Wang,et al.  A Millimeter-Wave Dual-Feed Square Loop Antenna for 5G Communications , 2017, IEEE Transactions on Antennas and Propagation.

[54]  Kaushik Sengupta,et al.  20.2 A frequency-reconfigurable mm-Wave power amplifier with active-impedance synthesis in an asymmetrical non-isolated combiner , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[55]  Hossein Hashemi,et al.  High-Breakdown, High- $f_{\mathrm{ max}}$ Multiport Stacked-Transistor Topologies for the ${W}$ -Band Power Amplifiers , 2017, IEEE Journal of Solid-State Circuits.

[56]  Ali Afsahi,et al.  2.2 A fully integrated reconfigurable wideband envelope-tracking SoC for high-bandwidth WLAN applications in a 28nm CMOS technology , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[57]  Anirban Sarkar,et al.  A 60-GHz Dual-Vector Doherty Beamformer , 2017, IEEE Journal of Solid-State Circuits.

[58]  W. H. Doherty A New High Efficiency Power Amplifier for Modulated Waves , 1936 .

[59]  Kaushik Sengupta,et al.  On-Chip THz Spectroscope Exploiting Electromagnetic Scattering With Multi-Port Antenna , 2016, IEEE Journal of Solid-State Circuits.

[60]  Patrick Reynaert,et al.  An E-Band Power Amplifier With Broadband Parallel-Series Power Combiner in 40-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[61]  Peter M. Asbeck,et al.  Analysis and Design of Stacked-FET Millimeter-Wave Power Amplifiers , 2013, IEEE Transactions on Microwave Theory and Techniques.

[62]  Christian Fager,et al.  Efficient Millimeter Wave Doherty PA Design Based on a Low-Loss Combiner Synthesis Technique , 2017, IEEE Microwave and Wireless Components Letters.

[63]  Gabriel M. Rebeiz,et al.  A 70–80-GHz SiGe Amplifier With Peak Output Power of 27.3 dBm , 2016, IEEE Transactions on Microwave Theory and Techniques.

[64]  Ali Hajimiri,et al.  Multi-Port Driven Radiators , 2013, IEEE Transactions on Microwave Theory and Techniques.

[65]  Patrick Reynaert,et al.  Transformer-Based Doherty Power Amplifiers for mm-Wave Applications in 40-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[66]  Hua Wang,et al.  The Wireless Workhorse: Mixed-Signal Power Amplifiers Leverage Digital and Analog Techniques to Enhance Large-Signal RF Operations , 2015, IEEE Microwave Magazine.