A Handcrafted Normalized-Convolution Network for Texture Classification

In this paper, we propose a Handcrafted Normalized-Convolution Network (NmzNet) for efficient texture classification. NmzNet is implemented by a three-layer normalized convolution network, which computes successive normalized convolution with a predefined filter bank (Gabor filter bank) and modulus non-linearities. Coefficients from different layers are aggregated by Fisher Vector aggregation to form the final discriminative features. The results of experimental evaluation on three texture datasets UIUC, KTH-TIPS-2a, and KTH-TIPS-2b indicate that our proposed approach achieves the good classification rate compared with other handcrafted methods. The results additionally indicate that only a marginal difference exists between the best classification rate of recent frontiers CNN and that of the proposed method on the experimented datasets.

[1]  Jun Guo,et al.  Multi-scale Joint Encoding of Local Binary Patterns for Texture and Material Classification , 2013, BMVC.

[2]  Jian Fan,et al.  Texture Classification by Wavelet Packet Signatures , 1993, MVA.

[3]  Hyun Seung Yang,et al.  Sorted Consecutive Local Binary Pattern for Texture Classification , 2015, IEEE Transactions on Image Processing.

[4]  Guoying Zhao,et al.  BRINT: Binary Rotation Invariant and Noise Tolerant Texture Classification , 2014, IEEE Transactions on Image Processing.

[5]  Dimitrios Charalampidis,et al.  Wavelet-based rotational invariant roughness features for texture classification and segmentation , 2002, IEEE Trans. Image Process..

[6]  Matti Pietikäinen,et al.  Combining LBP Difference and Feature Correlation for Texture Description , 2014, IEEE Transactions on Image Processing.

[7]  Paul W. Fieguth,et al.  Extended local binary patterns for texture classification , 2012, Image Vis. Comput..

[8]  Andrea Vedaldi,et al.  MatConvNet: Convolutional Neural Networks for MATLAB , 2014, ACM Multimedia.

[9]  Matti Pietikäinen,et al.  Median Robust Extended Local Binary Pattern for Texture Classification , 2016, IEEE Transactions on Image Processing.

[10]  Yong Xu,et al.  Combining powerful local and global statistics for texture description , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[12]  R. Porter,et al.  Robust rotation-invariant texture classification: wavelet, Gabor filter and GMRF based schemes , 1997 .

[13]  Rong Xiao,et al.  Pairwise Rotation Invariant Co-Occurrence Local Binary Pattern , 2014, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Gerald Schaefer,et al.  Multi-dimensional local binary pattern descriptors for improved texture analysis , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[15]  Bertrand Zavidovique,et al.  Median Binary Pattern for Textures Classification , 2007, ICIAR.

[16]  Kristin J. Dana,et al.  Compact representation of bidirectional texture functions , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[17]  Stéphane Mallat,et al.  Rotation, Scaling and Deformation Invariant Scattering for Texture Discrimination , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Andrew Zisserman,et al.  A Statistical Approach to Material Classification Using Image Patch Exemplars , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Yong Xu,et al.  Viewpoint Invariant Texture Description Using Fractal Analysis , 2009, International Journal of Computer Vision.

[20]  Matti Pietikäinen,et al.  Discriminative features for texture description , 2012, Pattern Recognit..

[21]  Ahmad Reza Naghsh-Nilchi,et al.  Noise tolerant local binary pattern operator for efficient texture analysis , 2012, Pattern Recognit. Lett..

[22]  Stéphane Mallat,et al.  Group Invariant Scattering , 2011, ArXiv.

[23]  Shu Liao,et al.  Dominant Local Binary Patterns for Texture Classification , 2009, IEEE Transactions on Image Processing.

[24]  Mario Fritz,et al.  Classifying materials in the real world , 2010, Image Vis. Comput..

[25]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[26]  Yong Xu,et al.  A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Xueming Qian,et al.  PLBP: An effective local binary patterns texture descriptor with pyramid representation , 2011, Pattern Recognit..

[28]  Lewis D. Griffin,et al.  Using Basic Image Features for Texture Classification , 2010, International Journal of Computer Vision.

[29]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[30]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Zhenhua Guo,et al.  A Completed Modeling of Local Binary Pattern Operator for Texture Classification , 2010, IEEE Transactions on Image Processing.

[32]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[33]  Jun Zhang,et al.  Local Energy Pattern for Texture Classification Using Self-Adaptive Quantization Thresholds , 2013, IEEE Transactions on Image Processing.

[34]  Carl-Fredrik Westin,et al.  Normalized and differential convolution , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Florent Perronnin,et al.  Fisher Kernels on Visual Vocabularies for Image Categorization , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Kristin J. Dana,et al.  3D Texture Recognition Using Bidirectional Feature Histograms , 2004, International Journal of Computer Vision.

[37]  B. S. Manjunath,et al.  Rotation-invariant texture classification using a complete space-frequency model , 1999, IEEE Trans. Image Process..

[38]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[40]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Iasonas Kokkinos,et al.  Deep Filter Banks for Texture Recognition, Description, and Segmentation , 2015, International Journal of Computer Vision.

[42]  Matti Pietikäinen,et al.  Rotation-Invariant Image and Video Description With Local Binary Pattern Features , 2012, IEEE Transactions on Image Processing.

[43]  Xudong Jiang,et al.  Noise-Resistant Local Binary Pattern With an Embedded Error-Correction Mechanism , 2013, IEEE Transactions on Image Processing.

[44]  Andrew Zisserman,et al.  A Statistical Approach to Texture Classification from Single Images , 2004, International Journal of Computer Vision.

[45]  Matti Pietikäinen,et al.  IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, TPAMI-2008-09-0620 1 WLD: A Robust Local Image Descriptor , 2022 .

[46]  Mario Fritz,et al.  On the Significance of Real-World Conditions for Material Classification , 2004, ECCV.

[47]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Zhenhua Guo,et al.  Rotation invariant texture classification using LBP variance (LBPV) with global matching , 2010, Pattern Recognit..

[50]  Yang Zhao,et al.  Completed Local Binary Count for Rotation Invariant Texture Classification , 2012, IEEE Transactions on Image Processing.

[51]  Matti Pietikäinen,et al.  Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features , 2009, SCIA.