Uniform decay rates for full von karman system of dynamic theromelasticity with free boundary conditions and partial boundary dissipation

The full von Karman system accounting for in plane acceleration and thermal effects is considered. The main results of the paper are: (i) the wellposedness of regular and weak (finite energy) solutions, (ii) the uniform decay rates obtained for the energy function in the presence of boundary damping affecting only the velocity field representing in plane displacements of the plate. The key role in these results is played by: (i) new sharp regularity estimates for the boundary traces of elastic systems and (ii) newly established properties of analyticity of semigroups arising in thermoelastic systems with free boundary conditions.

[1]  Lasiecka Irena,et al.  Weak, classical and intermediate solutions to full von karman system of dynamic nonlinear elasticity , 1998 .

[2]  Modelling and stabilization of nonlinear plates , 1991 .

[3]  Constantine M. Dafermos,et al.  On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity , 1968 .

[4]  J. Lagnese,et al.  Boundary Stabilization of Linear Elastodynamic Systems , 1983 .

[5]  R. Racke,et al.  Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type , 1995 .

[6]  Fatiha Alabau,et al.  Boundary observability, controllability and stabilization of linear elastodynamic systems , 1999 .

[7]  Victor Isakov,et al.  On Uniqueness in a Lateral Cauchy Problem with Multiple Characteristics , 1997 .

[8]  Irena Lasiecka,et al.  Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation , 1998 .

[9]  Irena Lasiecka,et al.  Analyticity, and lack thereof, of thermo-elastic semigroups , 1998 .

[10]  Irena Lasiecka,et al.  Exponential stability of a thermoelastic system without mechanical dissipation , 1995 .

[11]  P. Grisvard,et al.  Caractérisation de quelques espaces d'interpolation , 1967 .

[12]  Irena Lasiecka,et al.  Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping , 1993, Differential and Integral Equations.

[13]  Zhuangyi Liu,et al.  A note on the equations of a thermoelastic plate , 1995 .

[14]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[15]  R. Triggiani,et al.  Two direct proofs on the analyticity of the s.c. semigroup arising in abstract thermo-elastic equations , 1998, Advances in Differential Equations.

[16]  E. Zuazua,et al.  On exponential stability for von Kármán equations in the presence of thermal effects , 1998 .

[17]  Irena Lasiecka,et al.  Global existence, uniqueness and regularity of solutions to a von Kármán system with nonlinear boundary dissipation , 1996, Differential and Integral Equations.

[18]  I. Lasiecka Existence and uniqueness of the solutions to second order abstract equations with nonlinear and nonmonotone boundary conditions , 1994 .

[19]  R. Triggiani,et al.  Uniform stabilization of the wave equation with dirichlet-feedback control without geometrical conditions , 1992 .

[20]  J. U. Kim On the energy decay of a linear thermoelastic bar and plate , 1992 .

[21]  M. Tucsnak,et al.  Global existence for the full von Kármán system , 1996 .

[22]  H. Koch,et al.  Global existence of classical solutions to the dynamical von Kármán equations , 1993 .

[23]  M. Tucsnak,et al.  Boundary Stabilization for the von Karman Equations , 1995 .

[24]  Sur la décroissance non uniforme de l'énergie dans le système de la thermoélasticité linéaire , 1997 .

[25]  I. Lasiecka Uniform Stabilizability of a Full Von Karman System with Nonlinear Boundary Feedback , 1998 .

[26]  J. Lagnese Boundary Stabilization of Thin Plates , 1987 .

[27]  H. Koch Slow decay in linear thermoelasticity , 2000 .

[28]  Global stabilization of a dynamic von Kármán plate with nonlinear boundary feedback , 1995 .

[29]  Günter Leugering,et al.  Uniform stabilization of a nonlinear beam by nonlinear boundary feedback , 1991 .

[30]  P. G. Ciarlet,et al.  Les équations de Von Kármán , 1980 .

[31]  I. Lasiecka,et al.  Exponential Decay Rates for a Full von Karman System of Dynamic Thermoelasticity , 2000 .

[32]  J. Lagnese Uniform asymptotic energy estimates for solutions of the equations of dynamic plane elasticity with nonlinear dissipation at the boundary , 1990 .

[33]  Weijiu Liu,et al.  Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity , 1998 .

[34]  Jacques-Louis Lions,et al.  Modelling Analysis and Control of Thin Plates , 1988 .

[35]  Uniform Decays in Nonlinear Thermoelastic Systems , 1998 .