Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides

Using a linear combination of atomic orbitals approach, we report a systematic comparison of various density functional theory (DFT) and hybrid exchange-correlation functionals for the prediction of the electronic and structural properties of prototypical ferroelectric oxides. It is found that none of the available functionals is able to provide, at the same time, accurate electronic and structural properties of the cubic and tetragonal phases of BaTiO3 and PbTiO3. Some, although not all, usual DFT functionals predict the structure with acceptable accuracy, but always underestimate the electronic band gaps. Conversely, common hybrid functionals yield an improved description of the band gaps, but overestimate the volume and atomic distortions associated with ferroelectricity, giving rise to an unacceptably large c/a ratio for the tetragonal phases of both compounds. This supertetragonality is found to be induced mainly by the exchange energy corresponding to the generalized gradient approximation (GGA) and, to a lesser extent, by the exact exchange term of the hybrid functional. We thus propose an alternative functional that mixes exact exchange with the recently proposed GGA of Wu and Cohen [Phys. Rev. B 73, 235116 (2006)] which, for solids, improves over the treatment of exchange of the most usual GGA's. The new functional renders an accurate description of both the structural and electronic properties of typical ferroelectric oxides.

[1]  Pere Alemany,et al.  Calculation of exchange coupling constants in solid state transition metal compounds using localized atomic orbital basis sets , 2003 .

[2]  C. Catlow,et al.  Electronic structure and magnetic coupling inFeSbO4: A DFT study using hybrid functionals andGGA+Umethods , 2006 .

[3]  H. Hosono,et al.  Vacuum ultraviolet reflectance and electron energy loss spectra of , 1998 .

[4]  A. Glazer,et al.  Lattice parameters and birefringence in PbTiO3 single crystals , 1979 .

[5]  U. V. Waghmare,et al.  Ab initio statistical mechanics of the ferroelectric phase transition in PbTiO 3 , 1997 .

[6]  Roberto Dovesi,et al.  ON THE ELASTIC PROPERTIES OF LITHIUM, SODIUM AND POTASSIUM OXIDE - AN AB INITIO STUDY , 1991 .

[7]  D. Tozer A Kohn–Sham study of CH4, C6H6, and O3 using functionals incorporating exact exchange , 1996 .

[8]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[9]  N. Harrison,et al.  On the prediction of band gaps from hybrid functional theory , 2001 .

[10]  S. Yamanaka,et al.  Thermophysical properties of BaZrO3 and BaCeO3 , 2003 .

[11]  F. Gervais,et al.  Soft mode spectroscopy in barium titanate , 1980 .

[12]  S. H. Wemple Polarization Fluctuations and the Optical-Absorption Edge in BaTi O 3 , 1970 .

[13]  Louie,et al.  Electron correlation and the band gap in ionic crystals. , 1985, Physical review. B, Condensed matter.

[14]  T. Oguchi,et al.  First-principles study on the electronic structure of bismuth transition-metal oxides , 2004 .

[15]  Roger H. French,et al.  Bulk electronic structure of SrTiO3: Experiment and theory , 2001 .

[16]  Godby,et al.  Accurate exchange-correlation potential for silicon and its discontinuity on addition of an electron. , 1986, Physical review letters.

[17]  Vincenzo Barone,et al.  Inclusion of Hartree-Fock exchange in the density functional approach. Benchmark computations for diatomic molecules containing H, B, C, N, O, and F atoms , 1994 .

[18]  B. Lundqvist,et al.  Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism , 1976 .

[19]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[20]  R O Jones,et al.  The surface energy of a bounded electron gas , 1974 .

[21]  G. Shirane,et al.  NEUTRON DIFFRACTION STUDY OF ORTHORHOMBIC BaTiO$sub 3$ , 1957 .

[22]  David J. Singh Density functional studies of PbZrO3, KTaO3 and KNbO3 , 1997 .

[23]  Charles W. Bauschlicher,et al.  A comparison of the accuracy of different functionals , 1995 .

[24]  Peter Blaha,et al.  Hybrid exchange-correlation energy functionals for strongly correlated electrons: Applications to transition-metal monoxides , 2006 .

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  P. Taylor,et al.  OH + H2 → H2O + H. The importance of ‘exact exchange’ in density functional theory , 1995 .

[27]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[28]  Georg Kresse,et al.  Ground-state properties of multivalent manganese oxides: Density functional and hybrid density functional calculations , 2007 .

[29]  Godby,et al.  Density-Polarization Functional Theory of the Response of a Periodic Insulating Solid to an Electric Field. , 1995, Physical review letters.

[30]  Gunnar Borstel,et al.  Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study , 2004 .

[31]  Georg Kresse,et al.  Why does the B3LYP hybrid functional fail for metals? , 2007, The Journal of chemical physics.

[32]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[33]  A. Becke Correlation energy of an inhomogeneous electron gas: A coordinate‐space model , 1988 .

[34]  M. Alfredsson,et al.  The Performance of Hybrid Density Functionals in Solid State Chemistry , 2005 .

[35]  First-principles calculation of the band offset at BaO/BaTiO3 and SrO/SrTiO3 interfaces , 2002, cond-mat/0210666.

[36]  H. H. Wieder,et al.  Electrical Behavior of Barium Titanatge Single Crystals at Low Temperatures , 1955 .

[37]  Louie,et al.  Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. , 1986, Physical review. B, Condensed matter.

[38]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[39]  R. W. Godby,et al.  Long-wavelength behavior of the exchange-correlation kernel in the Kohn-Sham theory of periodic systems , 1997 .

[40]  李幼升,et al.  Ph , 1989 .

[41]  Nicholas C. Handy,et al.  Investigations using the Becke95 correlation functional , 1996 .

[42]  M. Stachiotti,et al.  Applications of the generalized gradient approximation to ferroelectric perovskites , 1998 .

[43]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[44]  Louie,et al.  First-principles theory of quasiparticles: Calculation of band gaps in semiconductors and insulators. , 1985, Physical review letters.

[45]  G. Shirane,et al.  X-ray and neutron diffraction study of ferroelectric PbTiO2 , 1956 .

[46]  D. Vanderbilt,et al.  Electric polarization as a bulk quantity and its relation to surface charge. , 1993, Physical review. B, Condensed matter.

[47]  X. Gonze,et al.  Dynamical atomic charges: The case of ABO(3) compounds , 1998 .

[48]  Systematic trends in the electronic structure parameters of the4dtransition-metal oxidesSrMO3(M=Zr,Mo, Ru, and Rh) , 2002, cond-mat/0207012.

[49]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[50]  A. Frova,et al.  Optical Field Effects and Band Structure of Some Perovskite-Type Ferroelectrics , 1967 .

[51]  Comparing the weighted density approximation with the LDA and GGA for ground-state properties of ferroelectric perovskites , 2004, cond-mat/0406092.

[52]  Karin M. Rabe,et al.  FIRST-PRINCIPLES INVESTIGATION OF FERROMAGNETISM AND FERROELECTRICITY IN BISMUTH MANGANITE , 1999 .

[53]  John P. Perdew,et al.  Exchange-correlation energy of a metallic surface: Wave-vector analysis , 1977 .

[54]  Zhigang Wu,et al.  More accurate generalized gradient approximation for solids , 2005, cond-mat/0508004.

[55]  R. Cohen Fundamental Physics of Ferroelectrics 2002 , 2002 .

[56]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[57]  J. Robertson Band offsets of wide-band-gap oxides and implications for future electronic devices , 2000 .

[58]  N. Harrison,et al.  Magnetic coupling constants from a hybrid density functional with 35% Hartree-Fock exchange , 2004 .

[59]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[60]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[61]  Thomas Bredow,et al.  Effect of exchange and correlation on bulk properties of MgO, NiO, and CoO , 2000 .

[62]  Axel D. Becke,et al.  Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing , 1996 .

[63]  Strong-correlation effects in Born effective charges , 2003, cond-mat/0303293.

[64]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[65]  L. Hedin,et al.  Effects of Electron-Electron and Electron-Phonon Interactions on the One-Electron States of Solids , 1969 .

[66]  F. Illas,et al.  Antiferromagnetic Exchange Interactions from Hybrid Density Functional Theory , 1997 .

[67]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[68]  Leeor Kronik,et al.  Valence electronic structure of gas-phase 3,4,9,10-perylene tetracarboxylic acid dianhydride: Experiment and theory , 2006 .

[69]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[70]  Teter Additional condition for transferability in pseudopotentials. , 1993, Physical review. B, Condensed matter.

[71]  N. H. March,et al.  ON THE ADIABATIC CONNECTION METHOD, AND SCALING OF ELECTRON-ELECTRON INTERACTIONS IN THE THOMAS-FERMI LIMIT , 1996 .

[72]  Richard Dronskowski,et al.  Structure and Stability of TaON Polymorphs , 2006 .

[73]  Mats Jonson,et al.  Descriptions of exchange and correlation effects in inhomogeneous electron systems , 1979 .

[74]  D. Vanderbilt,et al.  First-principles investigation of ferroelectricity in perovskite compounds. , 1994, Physical review. B, Condensed matter.

[75]  R. Dovesi,et al.  A theoretical investigation of the electronic structure and some thermodynamic properties of β-PbF2 , 1988 .

[76]  M. Schlüter,et al.  Self-energy operators and exchange-correlation potentials in semiconductors. , 1988, Physical review. B, Condensed matter.

[77]  David J. Singh,et al.  Optical functions ofKTaO3as determined by spectroscopic ellipsometry and comparison with band structure calculations , 2006 .

[78]  Hudson,et al.  Photoelectron spectroscopic study of the valence and core-level electronic structure of BaTiO3. , 1993, Physical review. B, Condensed matter.

[79]  A. Smith,et al.  Some mixed metal oxides of perovskite structure , 1960 .

[80]  Georg Kresse,et al.  Range separated hybrid density functional with long-range Hartree-Fock exchange applied to solids. , 2007, The Journal of chemical physics.

[81]  Georg Kresse,et al.  Density functional theory study of MnO by a hybrid functional approach , 2005 .

[82]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[83]  E. Sawaguchi Ferroelectricity versus Antiferroelectricity in the Solid Solutions of PbZrO3 and PbTiO3 , 1953 .

[84]  M. Orio,et al.  Density functional theory , 2009, Photosynthesis Research.

[85]  Xavier Gonze,et al.  A brief introduction to the ABINIT software package , 2005 .

[86]  Kevin E. Riley,et al.  Assessment of density functional theory methods for the computation of heats of formation and ionization potentials of systems containing third row transition metals. , 2007, The journal of physical chemistry. A.

[87]  Rainer Waser,et al.  Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices , 2003 .

[88]  A. Filippetti,et al.  Coexistence of magnetism and ferroelectricity in perovskites , 2002 .

[89]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[90]  M. Adachi,et al.  Piezoelectric Properties of Potassium Tantalate-Niobate Single Crystal , 1972 .

[91]  A. Yoshiasa,et al.  Anharmonic effective pair potentials in CaTiO3, SrTiO3 and CaGeO3 perovskite. , 2001, Journal of synchrotron radiation.

[92]  V. I. Zametin Absorption Edge Anomalies in Polar Semiconductors and Dielectrics at Phase Transitions , 1984, August 1.

[93]  R. Needs,et al.  Metal-insulator transition in Kohn-Sham theory and quasiparticle theory. , 1989, Physical review letters.

[94]  James S. Harris,et al.  Adiabatic-connection approach to Kohn-Sham theory , 1984 .

[95]  M. Catti,et al.  Elastic constants and electronic structure of fluorite (CaF2): an ab initio Hartree-Fock study , 1991 .

[96]  Rabe,et al.  First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3. , 1995, Physical review. B, Condensed matter.

[97]  Bartolomeo Civalleri,et al.  CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals , 2005 .