Semiparametric Estimation of Single-Index Hazard Functions Without Proportional Hazards

This research develops a semiparametric kernel-based estimator of hazard functions which does not assume proportional hazards. The maintained assumption is that the hazard functions depend on regressors only through a linear index. The estimator permits both discrete and continuous regressors, both discrete and continuous failure times, and can be applied to right-censored data and to multiple-risks data, in which case the hazard functions are risk-specific. The estimator is root-n consistent and asymptotically normally distributed. The estimator performs well in Monte Carlo experiments. Copyright Royal Economic Society 2006

[1]  Thomas M. Stoker,et al.  Semiparametric Estimation of Index Coefficients , 1989 .

[2]  Peter J. Bickel,et al.  On a semiparametric survival model with flexible covariate effect , 1998 .

[3]  P. Grambsch,et al.  Proportional hazards tests and diagnostics based on weighted residuals , 1994 .

[4]  J. Horowitz,et al.  Semiparametric Estimation of a Censored Regression Model with an Unknown Transformation of the Dependent Variable , 1999 .

[5]  Laurence L. George,et al.  The Statistical Analysis of Failure Time Data , 2003, Technometrics.

[6]  B. McCall,et al.  Testing the Proportional Hazards Assumption in the Presence of Unmeasured Heterogeneity: an Application to the Unemployment Durations of Displaced Workers , 1994 .

[7]  Tony Lancaster,et al.  The Econometric Analysis of Transition Data. , 1992 .

[8]  Tue Gørgens,et al.  AVERAGE DERIVATIVES FOR HAZARD FUNCTIONS , 2004, Econometric Theory.

[9]  Kjell A. Doksum,et al.  On average derivative quantile regression , 1997 .

[10]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[11]  J. Heckman,et al.  A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data , 1984 .

[12]  Chunrong Ai,et al.  A Semiparametric Maximum Likelihood Estimator , 1997 .

[13]  Gerard J. van den Berg,et al.  Duration models: specification, identification and multiple durations , 2000 .

[14]  J. Lamperti ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .

[15]  D. Pollard,et al.  $U$-Processes: Rates of Convergence , 1987 .

[16]  Niels Keiding,et al.  Statistical Models Based on Counting Processes , 1993 .

[17]  K. Taira Proof of Theorem 1.3 , 2004 .

[18]  Shakeeb Khan Two-stage rank estimation of quantile index models , 2001 .

[19]  Gary Koop,et al.  Econometric estimation of proportional hazard models , 1993 .

[20]  Aaron K. Han Non-parametric analysis of a generalized regression model: the maximum rank correlation estimator , 1987 .

[21]  Peter Dolton,et al.  Unemployment Duration and the Restart Effect: Some Experimental Evidence , 1996 .

[22]  D.,et al.  Regression Models and Life-Tables , 2022 .

[23]  H. Ichimura,et al.  SEMIPARAMETRIC LEAST SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS , 1993 .

[24]  W. Härdle,et al.  Direct Semiparametric Estimation of Single-Index Models with Discrete Covariates dpsfb950075.ps.tar = Enno MAMMEN J.S. MARRON: Mass Recentered Kernel Smoothers , 1996 .

[25]  D. Pollard,et al.  Simulation and the Asymptotics of Optimization Estimators , 1989 .

[26]  R. Sherman The Limiting Distribution of the Maximum Rank Correlation Estimator , 1993 .