Tropical curves, their Jacobians and Theta functions

We study Jacobian varieties for tropical curves. These are real tori equipped with integral affine structure and symmetric bilinear form. We define tropical counterpart of the theta function and establish tropical versions of the Abel-Jacobi, Riemann-Roch and Riemann theta divisor theorems.

[1]  D. Mumford Tata Lectures on Theta I , 1982 .

[2]  ON MUMFORD'S CONSTRUCTION OF DEGENERATING ABELIAN VARIETIES , 1996, alg-geom/9608014.

[3]  Louis J. Billera,et al.  Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..

[4]  Roland Bacher,et al.  The lattice of integral flows and the lattice of integral cuts on a finite graph , 1997 .

[5]  Mark Gross,et al.  Large Complex Structure Limits of K3 Surfaces , 2000 .

[6]  M. Kontsevich,et al.  Affine Structures and Non-Archimedean Analytic Spaces , 2004, math/0406564.

[7]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[8]  G. Mikhalkin Enumerative tropical algebraic geometry , 2003 .

[9]  D. Mumford An analytic construction of degenerating abelian varieties over complete rings , 1971 .

[10]  Norman Biggs,et al.  Chip-Firing and the Critical Group of a Graph , 1999 .

[11]  László Lovász,et al.  Chip-firing Games on Graphs , 1991, Eur. J. Comb..

[12]  Michael Kerber,et al.  A Riemann–Roch theorem in tropical geometry , 2006, math/0612129.

[13]  Valery Alexeev Complete moduli in the presence of semiabelian group action , 1999 .

[14]  G. Mikhalkin Enumerative tropical algebraic geometry in R^2 , 2003, math/0312530.

[15]  Yan Soibelman,et al.  Homological mirror symmetry and torus fibrations , 2000 .

[16]  Grigory Mikhalkin Tropical geometry and its applications , 2006 .

[17]  Serguei Norine,et al.  Riemann–Roch and Abel–Jacobi theory on a finite graph , 2006, math/0608360.

[18]  G. Faltings,et al.  Degeneration of Abelian varieties , 1990 .