DOA estimation with co-prime arrays in the presence of mutual coupling

In this paper, we present a method for performing direction-of-arrival (DOA) estimation using co-prime arrays in the presence of mutual coupling. The effects of mutual coupling are first examined for extended co-prime arrays configurations using the Receiving-Mutual-Impedance Method (RMIM). DOA estimation is then achieved by performing a joint estimation of the angles of arrival and the mutual coupling matrix, using the mixed-parameter covariance matrix adaptation evolution strategy. Simulation results demonstrating the effectiveness of the proposed method are provided.

[1]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[2]  I. Gupta,et al.  Effect of mutual coupling on the performance of adaptive arrays , 1983 .

[3]  Thomas Kailath,et al.  On spatial smoothing for direction-of-arrival estimation of coherent signals , 1985, IEEE Trans. Acoust. Speech Signal Process..

[4]  Y. Bar-Ness,et al.  A new approach to array geometry for improved spatial spectrum estimation , 1985, Proceedings of the IEEE.

[5]  C. Yeh,et al.  Bearing estimations with mutual coupling present , 1989 .

[6]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[7]  Anthony J. Weiss,et al.  Direction finding in the presence of mutual coupling , 1991 .

[8]  Douglas A. Gray,et al.  Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays , 1998, IEEE Trans. Signal Process..

[9]  Alexei Gorokhov,et al.  Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays , 1998, IEEE Transactions on Signal Processing.

[10]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[11]  Harry L. Van Trees,et al.  Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory , 2002 .

[12]  H. Hui Improved compensation for the mutual coupling effect in a dipole array for direction finding , 2003 .

[13]  Y. Ogawa,et al.  Mutual impedance of receiving array and calibration matrix for high-resolution DOA estimation , 2005, IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005..

[14]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[15]  C.C. Ko,et al.  DOA estimation under unknown mutual coupling and multipath , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[16]  T. Engin Tuncer,et al.  Classical and Modern Direction-of-Arrival Estimation , 2009 .

[17]  Dean Zhao,et al.  DOA estimation and self-calibration algorithm for nonuniform linear array , 2010, 2010 International Symposium on Intelligent Signal Processing and Communication Systems.

[18]  Hon Tat Hui,et al.  Mutual Coupling Compensation for Direction-of-Arrival Estimations Using the Receiving-Mutual-Impedance Method , 2010 .

[19]  P. P. Vaidyanathan,et al.  Sparse Sensing With Co-Prime Samplers and Arrays , 2011, IEEE Transactions on Signal Processing.

[20]  N. Hansen A CMA-ES for Mixed-Integer Nonlinear Optimization , 2011 .

[21]  P. Vaidyanathan,et al.  Coprime sampling and the music algorithm , 2011, 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE).

[22]  Dean Zhao,et al.  A Sparse Representation Method for DOA Estimation With Unknown Mutual Coupling , 2012, IEEE Antennas and Wireless Propagation Letters.

[23]  A. Hoorfar,et al.  Electromagnetic Optimization Using Mixed-Parameter and Multiobjective Covariance Matrix Adaptation Evolution Strategy , 2015, IEEE Transactions on Antennas and Propagation.