Efficient Global Learning of Entailment Graphs

Entailment rules between predicates are fundamental to many semantic-inference applications. Consequently, learning such rules has been an active field of research in recent years. Methods for learning entailment rules between predicates that take into account dependencies between different rules (e.g., entailment is a transitive relation) have been shown to improve rule quality, but suffer from scalability issues, that is, the number of predicates handled is often quite small. In this article, we present methods for learning transitive graphs that contain tens of thousands of nodes, where nodes represent predicates and edges correspond to entailment rules (termed entailment graphs). Our methods are able to scale to a large number of predicates by exploiting structural properties of entailment graphs such as the fact that they exhibit a “tree-like” property. We apply our methods on two data sets and demonstrate that our methods find high-quality solutions faster than methods proposed in the past, and moreover our methods for the first time scale to large graphs containing 20,000 nodes and more than 100,000 edges.

[1]  D. Sontag 1 Introduction to Dual Decomposition for Inference , 2010 .

[2]  Regina Barzilay,et al.  Multi-Event Extraction Guided by Global Constraints , 2012, NAACL.

[3]  Ido Dagan,et al.  BIUTEE: A Modular Open-Source System for Recognizing Textual Entailment , 2012, ACL.

[4]  Patrick Pantel,et al.  ISP: Learning Inferential Selectional Preferences , 2007, NAACL.

[5]  David J. Weir,et al.  A General Framework for Distributional Similarity , 2003, EMNLP.

[6]  Arun Sharma,et al.  ILP with Noise and Fixed Example Size: A Bayesian Approach , 1997, IJCAI.

[7]  Ido Dagan,et al.  Efficient Tree-based Approximation for Entailment Graph Learning , 2012, ACL.

[8]  Ido Dagan,et al.  Learning Entailment Relations by Global Graph Structure Optimization , 2012, CL.

[9]  Oren Etzioni,et al.  A Latent Dirichlet Allocation Method for Selectional Preferences , 2010, ACL.

[10]  Patrick Pantel,et al.  LEDIR: An Unsupervised Algorithm for Learning Directionality of Inference Rules , 2007, EMNLP.

[11]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[12]  Daniel Jurafsky,et al.  Semantic Taxonomy Induction from Heterogenous Evidence , 2006, ACL.

[13]  Ido Dagan,et al.  Recognizing Textual Entailment: Models and Applications , 2013, Recognizing Textual Entailment: Models and Applications.

[14]  Michael Collins,et al.  Exact Decoding of Phrase-Based Translation Models through Lagrangian Relaxation , 2011, EMNLP.

[15]  Alfred V. Aho,et al.  The Transitive Reduction of a Directed Graph , 1972, SIAM J. Comput..

[16]  Patrick Pantel,et al.  Discovery of inference rules for question-answering , 2001, Natural Language Engineering.

[17]  Martha Palmer,et al.  Class-Based Construction of a Verb Lexicon , 2000, AAAI/IAAI.

[18]  Tom Richens Anomalies in the WordNet Verb Hierarchy , 2008, COLING.

[19]  Wanxiang Che,et al.  Effective Bilingual Constraints for Semi-Supervised Learning of Named Entity Recognizers , 2013, AAAI.

[20]  Bob Coyne,et al.  LexPar: A Freely Available English Paraphrase Lexicon Automatically Extracted from FrameNet , 2009, 2009 IEEE International Conference on Semantic Computing.

[21]  Nada Lavrač,et al.  An Introduction to Inductive Logic Programming , 2001 .

[22]  Diarmuid Ó Séaghdha Latent Variable Models of Selectional Preference , 2010, ACL.

[23]  Ido Dagan,et al.  Augmenting WordNet-based Inference with Argument Mapping , 2009, TextInfer@ACL.

[24]  Brian Young,et al.  The Cross-Breeding of Dictionaries , 2004, LREC.

[25]  Dekang Lin,et al.  Automatic Retrieval and Clustering of Similar Words , 1998, ACL.

[26]  Jonathan Berant,et al.  Semantic Parsing via Paraphrasing , 2014, ACL.

[27]  Ido Dagan,et al.  Global Learning of Focused Entailment Graphs , 2010, ACL.

[28]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[29]  Dan Roth,et al.  Constraints Based Taxonomic Relation Classification , 2010, EMNLP.

[30]  Viktor Pekar,et al.  Discovery of event entailment knowledge from text corpora , 2008, Comput. Speech Lang..

[31]  Ido Dagan,et al.  Learning Entailment Rules for Unary Templates , 2008, COLING.

[32]  Thorsten Joachims,et al.  A support vector method for multivariate performance measures , 2005, ICML.

[33]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[34]  Ido Dagan,et al.  Scaling Web-based Acquisition of Entailment Relations , 2004, EMNLP.

[35]  Nathanael Chambers,et al.  Template-Based Information Extraction without the Templates , 2011, ACL.

[36]  Sebastian Riedel,et al.  Incremental Integer Linear Programming for Non-projective Dependency Parsing , 2006, EMNLP.

[37]  Oren Etzioni,et al.  Learning First-Order Horn Clauses from Web Text , 2010, EMNLP.

[38]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[39]  Oren Etzioni,et al.  Open Information Extraction from the Web , 2007, CACM.

[40]  Ido Dagan,et al.  A Two Level Model for Context Sensitive Inference Rules , 2013, ACL.

[41]  Oren Etzioni,et al.  Identifying Relations for Open Information Extraction , 2011, EMNLP.

[42]  Graeme Hirst,et al.  Evaluating WordNet-based Measures of Lexical Semantic Relatedness , 2006, CL.

[43]  Satoshi Sekine,et al.  Preemptive Information Extraction using Unrestricted Relation Discovery , 2006, NAACL.

[44]  Ido Dagan,et al.  Learning Verb Inference Rules from Linguistically-Motivated Evidence , 2012, EMNLP-CoNLL.

[45]  Ido Dagan,et al.  Global Learning of Typed Entailment Rules , 2011, ACL.

[46]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[47]  Eduard H. Hovy,et al.  Learning surface text patterns for a Question Answering System , 2002, ACL.

[48]  J. E. Kelley,et al.  The Cutting-Plane Method for Solving Convex Programs , 1960 .

[49]  Mirella Lapata,et al.  Topic Models for Meaning Similarity in Context , 2010, COLING.

[50]  Alexander M. Rush,et al.  Improved Parsing and POS Tagging Using Inter-Sentence Consistency Constraints , 2012, EMNLP-CoNLL.

[51]  Nizar Habash,et al.  A Categorial Variation Database for English , 2003, NAACL.

[52]  Graeme Hirst,et al.  Recognizing Textual Entailment , 2012 .

[53]  Ido Dagan,et al.  Crowdsourcing Inference-Rule Evaluation , 2012, ACL.

[54]  Anette Frank,et al.  Aligning Predicates across Monolingual Comparable Texts using Graph-based Clustering , 2012, EMNLP.

[55]  Ido Dagan,et al.  Generating Entailment Rules from FrameNet , 2010, ACL.

[56]  Eric P. Xing,et al.  Concise Integer Linear Programming Formulations for Dependency Parsing , 2009, ACL.

[57]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.

[58]  Gerhard Weikum,et al.  PATTY: A Taxonomy of Relational Patterns with Semantic Types , 2012, EMNLP.

[59]  Satoshi Sekine,et al.  Automatic Paraphrase Discovery based on Context and Keywords between NE Pairs , 2005, IJCNLP.

[60]  Oren Etzioni,et al.  Unsupervised Methods for Determining Object and Relation Synonyms on the Web , 2014, J. Artif. Intell. Res..

[61]  Chris Callison-Burch,et al.  PPDB: The Paraphrase Database , 2013, NAACL.

[62]  Tommi S. Jaakkola,et al.  Introduction to dual composition for inference , 2011 .

[63]  Christopher D. Manning,et al.  NaturalLI: Natural Logic Inference for Common Sense Reasoning , 2014, EMNLP.

[64]  Patrick Pantel,et al.  VerbOcean: Mining the Web for Fine-Grained Semantic Verb Relations , 2004, EMNLP.