Symmetric Categorial Grammar
暂无分享,去创建一个
[1] A. Bastenhof,et al. Continuations in Natural Language Syntax and Semantics , 2009 .
[2] R. Seely,et al. Proof theory for full intuitionistic linear logic, bilinear logic, and MIX categories. , 1997 .
[3] Michael Moortgat,et al. Structural control , 1997 .
[4] Stuart M. Shieber,et al. Principles and Implementation of Deductive Parsing , 1994, J. Log. Program..
[5] Mati Pentus,et al. Lambek calculus is NP-complete , 2006, Theor. Comput. Sci..
[6] K. Swamy,et al. Dually residuated lattice ordered semigroups , 1965 .
[7] Sylvain Pogodalla,et al. On the Expressive Power of Abstract Categorial Grammars: Representing Context-Free Formalisms , 2004, J. Log. Lang. Inf..
[8] Mati Pentus. The conjoinability relation in Lambek calculus and linear logic , 1994, J. Log. Lang. Inf..
[9] Peter Selinger,et al. Control categories and duality: on the categorical semantics of the lambda-mu calculus , 2001, Mathematical Structures in Computer Science.
[10] Michael Moortgat,et al. Relational Semantics for the Lambek-Grishin Calculus , 2009, MOL.
[11] Alan Bundy,et al. Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.
[12] C. Barker,et al. Donkey anaphora is in-scope binding , 2008 .
[13] Michael Moortgat,et al. Continuation Semantics for Symmetric Categorial Grammar , 2007, WoLLIC.
[14] Philippe de Groote,et al. Towards a Montagovian Account of Dynamics , 2006 .
[15] Annie Foret,et al. On the computation of joins for non associative Lambek categorial grammars , 2003 .
[16] H. Ono,et al. Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Volume 151 , 2007 .
[17] Gary M. Hardegree,et al. Algebraic Methods in Philosophical Logic , 2001 .
[18] Chris Barker,et al. Types as Graphs: Continuations in Type Logical Grammar , 2006, J. Log. Lang. Inf..
[19] S. Shieber,et al. Linguistic side effects , 2005 .
[20] R. Bernardi. Reasoning with Polarity in Categorial Type Logic , 2002 .
[21] Philip Wadler,et al. Call-by-Value Is Dual to Call-by-Name - Reloaded , 2005, RTA.
[22] Richard Moot,et al. Lambek Grammars, Tree Adjoining Grammars and Hyperedge Replacement Grammars , 2008, TAG.
[23] M. Moortgat. Generalized quantifiers and discontinuous type constructors , 1996 .
[24] François Lamarche,et al. Classical Non-Associative Lambek Calculus , 2002, Stud Logica.
[25] Claudia Casadio,et al. Non-Commutative Linear Logic in Linguistics , 2001, Grammars.
[26] Philippe de Groote,et al. The Non-Associative Lambek Calculus with Product in Polynomial Time , 1999, TABLEAUX.
[27] Michael Moortgat,et al. Symmetries in Natural Language Syntax and Semantics: The Lambek-Grishin Calculus , 2007, WoLLIC.
[28] Michael Moortgat,et al. Categorial Type Logics , 1997, Handbook of Logic and Language.
[29] Hugo Herbelin,et al. The duality of computation , 2000, ICFP '00.
[30] Valeria de Paiva,et al. A PARIGOT-STYLE LINEAR -CALCULUS FOR FULL INTUITIONISTIC LINEAR LOGIC , 2006 .
[31] Michael Moortgat. Multimodal Linguistic Inference , 1995, Log. J. IGPL.
[32] Roland Hausser,et al. Continuations in Natural Language , 1989 .
[33] Pierre Boullier,et al. Chinese Numbers, MIX, Scrambling, and Range Concatenation Grammars , 1999, EACL.
[34] J.F.A.K. van Benthem,et al. Language in Action: Categories, Lambdas and Dynamic Logic , 1997 .
[35] Stéphane Lengrand. Call-by-value, call-by-name, and strong normalization for the classical sequent calculus , 2003, Electron. Notes Theor. Comput. Sci..
[36] Martin Stokhof,et al. Proceedings of the Thirteenth Amsterdam Colloquium , 2001 .
[37] H.L.W. Hendriks,et al. Studied flexibility : categories and types in syntax and semantics , 1993 .
[38] Johan van Benthem,et al. Language in action , 1991, J. Philos. Log..
[39] V. Michele Abrusci. Phase Semantics and Sequent Calculus for Pure Noncommutative Classical Linear Propositional Logic , 1991, J. Symb. Log..
[40] Katalin Bimbó,et al. Symmetric Generalized Galois Logics , 2009, Logica Universalis.
[41] Matteo Capelletti,et al. Parsing with Structure Preserving Categorial Grammars , 2007 .
[42] Wojciech Buszkowski,et al. Mathematical Linguistics and Proof Theory , 1997, Handbook of Logic and Language.
[43] J. Benthem. Essays in Logical Semantics , 1986 .
[44] C. Barker. Continuations and the Nature of Quantification , 2002 .
[45] Christian Retoré,et al. Non-Associative Categorial Grammars and Abstract Categorial Grammars , 2007 .
[46] Joachim Lambek,et al. On the Calculus of Syntactic Types , 1961 .
[47] Willemien Katrien Vermaat,et al. The logic of variation : A cross-linguistic account of wh-question formation , 2005 .
[48] Blockinøøóò׺ Ñññðð,et al. Galois Connections in Categorial Type Logic , 2001 .
[49] Alasdair Urquhart. Katalin Bimbó and J. Michael Dunn. Relational semantics of nonclassical logical calculi. CSLI Lecture Notes, no. 188. CSLI Publications, Stanford University, 2008, x + 382 pp. , 2010, The Bulletin of Symbolic Logic.
[50] Katalin Bimbó,et al. Generalized Galois Logics: Relational Semantics of Nonclassical Logical Calculi , 2008 .
[51] Johan van Benthem,et al. The semantics of variety in categorial grammar , 1988 .
[52] C. Chang,et al. Algebraic analysis of many valued logics , 1958 .
[53] Richard Moot,et al. Proof nets for display logic , 2007, ArXiv.
[54] Roman Jakobson,et al. Structure of Language and Its Mathematical Aspects , 1961 .
[55] L. Fuchs. Partially Ordered Algebraic Systems , 2011 .
[56] José M. Castaño. Global Index Grammars and Descriptive Power , 2004, J. Log. Lang. Inf..
[57] Glyn Morrill,et al. Discontinuity in categorial grammar , 1995 .
[58] Mai Gehrke,et al. Generalized Kripke Frames , 2006, Stud Logica.
[59] Glyn Morrill,et al. Dutch Grammar and Processing: A Case Study in TLG , 2007, TbiLLC.
[60] Michael Moortgat,et al. Continuation semantics for the Lambek-Grishin calculus , 2010, Inf. Comput..
[61] Rajeev Goré,et al. Substructural Logics on Display , 1998, Log. J. IGPL.
[62] Philippe de Groote,et al. Towards Abstract Categorial Grammars , 2001, ACL.
[63] Matthijs Melissen,et al. The Generative Capacity of the Lambek-Grishin Calculus: A New Lower Bound , 2009, FG.
[64] J. Lambek. The Mathematics of Sentence Structure , 1958 .
[65] Claudio Sacerdoti Coen. Explanation in Natural Language of lamda-µµ-Terms , 2005, MKM.
[66] Peter Jipsen,et al. Residuated lattices: An algebraic glimpse at sub-structural logics , 2007 .
[67] Richard Moot,et al. Proof Nets for the Multimodal Lambek Calculus , 1999, Stud Logica.