Symmetric Categorial Grammar

The Lambek-Grishin calculus is a symmetric version of categorial grammar obtained by augmenting the standard inventory of type-forming operations (product and residual left and right division) with a dual family: coproduct, left and right difference. Interaction between these two families is provided by distributivity laws. These distributivity laws have pleasant invariance properties: stability of interpretations for the Curry-Howard derivational semantics, and structure-preservation at the syntactic end. The move to symmetry thus offers novel ways of reconciling the demands of natural language form and meaning.

[1]  A. Bastenhof,et al.  Continuations in Natural Language Syntax and Semantics , 2009 .

[2]  R. Seely,et al.  Proof theory for full intuitionistic linear logic, bilinear logic, and MIX categories. , 1997 .

[3]  Michael Moortgat,et al.  Structural control , 1997 .

[4]  Stuart M. Shieber,et al.  Principles and Implementation of Deductive Parsing , 1994, J. Log. Program..

[5]  Mati Pentus,et al.  Lambek calculus is NP-complete , 2006, Theor. Comput. Sci..

[6]  K. Swamy,et al.  Dually residuated lattice ordered semigroups , 1965 .

[7]  Sylvain Pogodalla,et al.  On the Expressive Power of Abstract Categorial Grammars: Representing Context-Free Formalisms , 2004, J. Log. Lang. Inf..

[8]  Mati Pentus The conjoinability relation in Lambek calculus and linear logic , 1994, J. Log. Lang. Inf..

[9]  Peter Selinger,et al.  Control categories and duality: on the categorical semantics of the lambda-mu calculus , 2001, Mathematical Structures in Computer Science.

[10]  Michael Moortgat,et al.  Relational Semantics for the Lambek-Grishin Calculus , 2009, MOL.

[11]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[12]  C. Barker,et al.  Donkey anaphora is in-scope binding , 2008 .

[13]  Michael Moortgat,et al.  Continuation Semantics for Symmetric Categorial Grammar , 2007, WoLLIC.

[14]  Philippe de Groote,et al.  Towards a Montagovian Account of Dynamics , 2006 .

[15]  Annie Foret,et al.  On the computation of joins for non associative Lambek categorial grammars , 2003 .

[16]  H. Ono,et al.  Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Volume 151 , 2007 .

[17]  Gary M. Hardegree,et al.  Algebraic Methods in Philosophical Logic , 2001 .

[18]  Chris Barker,et al.  Types as Graphs: Continuations in Type Logical Grammar , 2006, J. Log. Lang. Inf..

[19]  S. Shieber,et al.  Linguistic side effects , 2005 .

[20]  R. Bernardi Reasoning with Polarity in Categorial Type Logic , 2002 .

[21]  Philip Wadler,et al.  Call-by-Value Is Dual to Call-by-Name - Reloaded , 2005, RTA.

[22]  Richard Moot,et al.  Lambek Grammars, Tree Adjoining Grammars and Hyperedge Replacement Grammars , 2008, TAG.

[23]  M. Moortgat Generalized quantifiers and discontinuous type constructors , 1996 .

[24]  François Lamarche,et al.  Classical Non-Associative Lambek Calculus , 2002, Stud Logica.

[25]  Claudia Casadio,et al.  Non-Commutative Linear Logic in Linguistics , 2001, Grammars.

[26]  Philippe de Groote,et al.  The Non-Associative Lambek Calculus with Product in Polynomial Time , 1999, TABLEAUX.

[27]  Michael Moortgat,et al.  Symmetries in Natural Language Syntax and Semantics: The Lambek-Grishin Calculus , 2007, WoLLIC.

[28]  Michael Moortgat,et al.  Categorial Type Logics , 1997, Handbook of Logic and Language.

[29]  Hugo Herbelin,et al.  The duality of computation , 2000, ICFP '00.

[30]  Valeria de Paiva,et al.  A PARIGOT-STYLE LINEAR -CALCULUS FOR FULL INTUITIONISTIC LINEAR LOGIC , 2006 .

[31]  Michael Moortgat Multimodal Linguistic Inference , 1995, Log. J. IGPL.

[32]  Roland Hausser,et al.  Continuations in Natural Language , 1989 .

[33]  Pierre Boullier,et al.  Chinese Numbers, MIX, Scrambling, and Range Concatenation Grammars , 1999, EACL.

[34]  J.F.A.K. van Benthem,et al.  Language in Action: Categories, Lambdas and Dynamic Logic , 1997 .

[35]  Stéphane Lengrand Call-by-value, call-by-name, and strong normalization for the classical sequent calculus , 2003, Electron. Notes Theor. Comput. Sci..

[36]  Martin Stokhof,et al.  Proceedings of the Thirteenth Amsterdam Colloquium , 2001 .

[37]  H.L.W. Hendriks,et al.  Studied flexibility : categories and types in syntax and semantics , 1993 .

[38]  Johan van Benthem,et al.  Language in action , 1991, J. Philos. Log..

[39]  V. Michele Abrusci Phase Semantics and Sequent Calculus for Pure Noncommutative Classical Linear Propositional Logic , 1991, J. Symb. Log..

[40]  Katalin Bimbó,et al.  Symmetric Generalized Galois Logics , 2009, Logica Universalis.

[41]  Matteo Capelletti,et al.  Parsing with Structure Preserving Categorial Grammars , 2007 .

[42]  Wojciech Buszkowski,et al.  Mathematical Linguistics and Proof Theory , 1997, Handbook of Logic and Language.

[43]  J. Benthem Essays in Logical Semantics , 1986 .

[44]  C. Barker Continuations and the Nature of Quantification , 2002 .

[45]  Christian Retoré,et al.  Non-Associative Categorial Grammars and Abstract Categorial Grammars , 2007 .

[46]  Joachim Lambek,et al.  On the Calculus of Syntactic Types , 1961 .

[47]  Willemien Katrien Vermaat,et al.  The logic of variation : A cross-linguistic account of wh-question formation , 2005 .

[48]  Blockinøøóò׺ Ñññðð,et al.  Galois Connections in Categorial Type Logic , 2001 .

[49]  Alasdair Urquhart Katalin Bimbó and J. Michael Dunn. Relational semantics of nonclassical logical calculi. CSLI Lecture Notes, no. 188. CSLI Publications, Stanford University, 2008, x + 382 pp. , 2010, The Bulletin of Symbolic Logic.

[50]  Katalin Bimbó,et al.  Generalized Galois Logics: Relational Semantics of Nonclassical Logical Calculi , 2008 .

[51]  Johan van Benthem,et al.  The semantics of variety in categorial grammar , 1988 .

[52]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[53]  Richard Moot,et al.  Proof nets for display logic , 2007, ArXiv.

[54]  Roman Jakobson,et al.  Structure of Language and Its Mathematical Aspects , 1961 .

[55]  L. Fuchs Partially Ordered Algebraic Systems , 2011 .

[56]  José M. Castaño Global Index Grammars and Descriptive Power , 2004, J. Log. Lang. Inf..

[57]  Glyn Morrill,et al.  Discontinuity in categorial grammar , 1995 .

[58]  Mai Gehrke,et al.  Generalized Kripke Frames , 2006, Stud Logica.

[59]  Glyn Morrill,et al.  Dutch Grammar and Processing: A Case Study in TLG , 2007, TbiLLC.

[60]  Michael Moortgat,et al.  Continuation semantics for the Lambek-Grishin calculus , 2010, Inf. Comput..

[61]  Rajeev Goré,et al.  Substructural Logics on Display , 1998, Log. J. IGPL.

[62]  Philippe de Groote,et al.  Towards Abstract Categorial Grammars , 2001, ACL.

[63]  Matthijs Melissen,et al.  The Generative Capacity of the Lambek-Grishin Calculus: A New Lower Bound , 2009, FG.

[64]  J. Lambek The Mathematics of Sentence Structure , 1958 .

[65]  Claudio Sacerdoti Coen Explanation in Natural Language of lamda-µµ-Terms , 2005, MKM.

[66]  Peter Jipsen,et al.  Residuated lattices: An algebraic glimpse at sub-structural logics , 2007 .

[67]  Richard Moot,et al.  Proof Nets for the Multimodal Lambek Calculus , 1999, Stud Logica.