Kinetic Simulation of Filament Growth Dynamics in Memristive Electrochemical Metallization Devices

In this work we report on kinetic Monte-Carlo calculations of resistive switching and the underlying growth dynamics of filaments in an electrochemical metallization device consisting of an Ag/TiO2/Pt sandwich-like thin film system. The developed model is not limited to i) fast time scale dynamics and ii) only one growth and dissolution cycle of metallic filaments. In particular, we present results from the simulation of consecutive cycles. We find that the numerical results are in excellent agreement with experimentally obtained data. Additionally, we observe an unexpected filament growth mode which is in contradiction to the widely acknowledged picture of filament growth, but consistent with recent experimental findings.

[1]  Ute Beyer,et al.  Radiation Effects In Solids , 2016 .

[2]  Alejandro Strachan,et al.  Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells. , 2015, Nature materials.

[3]  Huaqiang Wu,et al.  Atomistic study of dynamics for metallic filament growth in conductive-bridge random access memory. , 2015, Physical chemistry chemical physics : PCCP.

[4]  Memristors: A-maze-ing arrays , 2011 .

[5]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[6]  J. Simmons Conduction in thin dielectric films , 1971 .

[7]  Doo Seok Jeong,et al.  Towards artificial neurons and synapses: a materials point of view , 2013 .

[8]  Yuchao Yang,et al.  Observation of conducting filament growth in nanoscale resistive memories , 2012, Nature Communications.

[9]  Andrew G. Glen,et al.  APPL , 2001 .

[10]  Arthur F. Voter,et al.  Introduction to the Kinetic Monte Carlo Method , 2007 .

[11]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[12]  L. Chua Memristor-The missing circuit element , 1971 .

[13]  Thomas Mussenbrock,et al.  Pattern recognition with TiO x -based memristive devices , 2015 .

[14]  M. Kozicki,et al.  Effects of cooperative ionic motion on programming kinetics of conductive-bridge memory cells , 2012 .

[15]  Wei D. Lu,et al.  Electrochemical dynamics of nanoscale metallic inclusions in dielectrics , 2014, Nature Communications.

[16]  W. H. Weinberg,et al.  Theoretical foundations of dynamical Monte Carlo simulations , 1991 .

[17]  T. W. Hickmott LOW-FREQUENCY NEGATIVE RESISTANCE IN THIN ANODIC OXIDE FILMS , 1962 .

[18]  P Fons,et al.  Interfacial phase-change memory. , 2011, Nature nanotechnology.

[19]  D. Morgan,et al.  Electrical phenomena in amorphous oxide films , 1970 .

[20]  F. Zahid,et al.  Oxygen vacancy filament formation in TiO2: A kinetic Monte Carlo study , 2012 .

[21]  Vivek Subramanian,et al.  A Detailed Study of the Forming Stage of an Electrochemical Resistive Switching Memory by KMC Simulation , 2011, IEEE Electron Device Letters.

[22]  W. E. Beadle,et al.  Switching properties of thin Nio films , 1964 .

[23]  Michael N. Kozicki,et al.  One-dimensional model of the programming kinetics of conductive-bridge memory cells , 2011 .

[24]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[25]  S. Seo,et al.  Reproducible resistance switching in polycrystalline NiO films , 2004 .

[26]  D. Ielmini,et al.  Study of Multilevel Programming in Programmable Metallization Cell (PMC) Memory , 2009, IEEE Transactions on Electron Devices.

[27]  Byung Joon Choi,et al.  Identification of a determining parameter for resistive switching of TiO2 thin films , 2005 .

[28]  Rainer Waser,et al.  Understanding filamentary growth in electrochemical metallization memory cells using kinetic Monte Carlo simulations. , 2015, Nanoscale.

[29]  Yuchao Yang,et al.  Building Neuromorphic Circuits with Memristive Devices , 2013, IEEE Circuits and Systems Magazine.

[30]  Massimiliano Di Ventra,et al.  Phase-transition driven memristive system , 2009, 0901.0899.

[31]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[32]  Yidong Xia,et al.  Redox-controlled memristive switching in the junctions employing Ti reactive electrodes , 2011 .