Object representation and recognition using mathematical morphology model

The integration of representation and recognition of rigid solid objects is becoming increasingly important in computer-aided design (CAD), computer-aided manufacturing (CAM), computer graphics, computer vision, and other fields that deal with spatial phenomena. The mathematical framework used for modeling solid objects is mathematical morphology, which is based on set-theoretic concept. The mathematical characteristics of these operators are investigated in order to achieve a formal theory. Using mathematical morphology as a tool, our theoretical research aims at studying the representation schemes for the dimension and tolerance of the geometric structure. Object features can be also extracted by using the mathematical morphology approach. Through a distance transformation, we can obtain the shape number, significant points database, and skeleton. We have also developed the object recognition, localization, and corner and circle detection algorithms.

[1]  Stanley R Sternberg,et al.  Grayscale morphology , 1986 .

[2]  King-Sun Fu,et al.  Syntactic Pattern Recognition And Applications , 1968 .

[3]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[4]  G. Matheron Random Sets and Integral Geometry , 1976 .

[5]  Pijush K. Ghosh,et al.  A mathematical model for shape description using Minkowski operators , 1988, Comput. Vis. Graph. Image Process..

[6]  C. J. Hilditch,et al.  Linear Skeletons From Square Cupboards , 1969 .

[7]  ARISTIDES A. G. REQUICHA,et al.  Representations for Rigid Solids: Theory, Methods, and Systems , 1980, CSUR.

[8]  Kim L. Boyer,et al.  Robotic Manipulation Experiments Using Structural Stereopsis for 3D Vision , 1986, IEEE Expert.

[9]  Frank Y. Shih,et al.  Threshold Decomposition of Gray-Scale Morphology into Binary Morphology , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Christian Lantuejoul,et al.  Skeletonization in Quantitative Metallography , 1980 .

[11]  Per-Erik Danielsson Reply to “Comments on a new shape factor” , 1978 .

[12]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Jon R. Mandeville,et al.  Novel method for analysis of printed circuit images , 1985 .

[14]  H. Voelcker,et al.  Solid modeling: current status and research directions , 1983, IEEE Computer Graphics and Applications.

[15]  J. Serra Introduction to mathematical morphology , 1986 .

[16]  Petros Maragos,et al.  Morphological skeleton representation and coding of binary images , 1984, IEEE Trans. Acoust. Speech Signal Process..

[17]  Edward R. Dougherty,et al.  Morphological methods in image and signal processing , 1988 .

[18]  Aristides A. G. Requicha,et al.  Offsetting operations in solid modelling , 1986, Comput. Aided Geom. Des..

[19]  George Allen An introduction to solid modelling , 1984, Comput. Graph..

[20]  Frank Y. Shih,et al.  Decomposition of gray-scale morphological structuring elements , 1991, Pattern Recognit..

[21]  Robert M. Haralick,et al.  Morphologic edge detection , 1987, IEEE J. Robotics Autom..

[22]  Stanley R. Sternberg,et al.  A morphological approach to finished surface inspection , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[23]  Aristides A. G. Requicha,et al.  Representation of Tolerances in Solid Modeling: Issues and Alternative Approaches , 1984 .

[24]  A.J. Frank,et al.  Progressive image transmission using a growth-geometry coding , 1980, Proceedings of the IEEE.