Contributions of biogenic material to the atmospheric ice-nucleating particle population in North Western Europe

[1]  P. Field,et al.  Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles , 2018, Proceedings of the National Academy of Sciences.

[2]  Bingbing Wang,et al.  The Role of Organic Aerosol in Atmospheric Ice Nucleation: A Review , 2018 .

[3]  M. Krämer,et al.  Overview of Ice Nucleating Particles , 2017 .

[4]  S. Decesari,et al.  Ground level ice nuclei particle measurements including Saharan dust events at a Po Valley rural site (San Pietro Capofiume, Italy) , 2017 .

[5]  K. Froyd,et al.  Improved identification of primary biological aerosol particles using single-particle mass spectrometry , 2016 .

[6]  D. Ceburnis,et al.  Contribution of feldspar and marine organic aerosols to global ice nucleating particle concentrations , 2016 .

[7]  M. Carpenter,et al.  Not all feldspars are equal: a survey of ice nucleating properties across the feldspar group of minerals , 2016 .

[8]  M. Steinbacher,et al.  Predicting abundance and variability of ice nucleating particles inprecipitation at the high-altitude observatory Jungfraujoch , 2016 .

[9]  S. Kreidenweis,et al.  Sources of organic ice nucleating particles in soils , 2016 .

[10]  A. Laskin,et al.  Airborne soil organic particles generated by precipitation , 2016 .

[11]  B. Murray,et al.  The adsorption of fungal ice-nucleating proteins on mineral dusts: a terrestrial reservoir of atmospheric ice-nucleating particles , 2016 .

[12]  E. Stopelli,et al.  Clues that decaying leaves enrich Arctic air with ice nucleating particles , 2016 .

[13]  M. Kakikawa,et al.  Variations of ice nuclei concentration induced by rain and snowfall within a local forested site in Japan , 2016 .

[14]  M. Harper,et al.  Air sampling filtration media: Collection efficiency for respirable size-selective sampling , 2016, Aerosol science and technology : the journal of the American Association for Aerosol Research.

[15]  M. D. Stokes,et al.  Sea spray aerosol as a unique source of ice nucleating particles , 2015, Proceedings of the National Academy of Sciences.

[16]  R. Draxler,et al.  NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System , 2015 .

[17]  P. Ariya,et al.  Snow‐borne nanosized particles: Abundance, distribution, composition, and significance in ice nucleation processes , 2015 .

[18]  Markus D. Petters,et al.  Revisiting ice nucleation from precipitation samples , 2015 .

[19]  A. Bertram,et al.  A marine biogenic source of atmospheric ice-nucleating particles , 2015, Nature.

[20]  Yuesi Wang,et al.  Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes , 2015 .

[21]  B. Murray,et al.  Sensitivity of liquid clouds to homogenous freezing parameterizations , 2015, Geophysical research letters.

[22]  Ulrich Pöschl,et al.  Ice nucleation activity in the widespread soil fungus Mortierella alpina , 2015 .

[23]  B. Murray,et al.  The relevance of nanoscale biological fragments for ice nucleation in clouds , 2015, Scientific Reports.

[24]  Young Soo Joung,et al.  Aerosol generation by raindrop impact on soil , 2015, Nature Communications.

[25]  R. Hitzenberger,et al.  Identification of Ice Nucleation Active Sites on Feldspar Dust Particles , 2015, The journal of physical chemistry. A.

[26]  Markus D. Petters,et al.  High Relative Humidity as a Trigger for Widespread Release of Ice Nuclei , 2014 .

[27]  U. Pöschl,et al.  Ice nucleation by water-soluble macromolecules , 2014 .

[28]  B. Murray,et al.  A technique for quantifying heterogeneous ice nucleation in microlitre supercooled water droplets , 2014 .

[29]  Timothy P. Wright,et al.  A comprehensive laboratory study on the immersion freezing behavior of illite NX particles. A comparison of 17 ice nucleation measurement techniques , 2014 .

[30]  P. Amato,et al.  Quantification of ice nuclei active at near 0 C temperatures in low-altitude clouds at the Puy de Dôme atmospheric station , 2014 .

[31]  G. Mann,et al.  Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity , 2014 .

[32]  Benjamin J. Murray,et al.  Ice nucleation by fertile soil dusts: relative importance of mineral and biogenic components , 2014 .

[33]  U. Pöschl,et al.  Bioprecipitation: a feedback cycle linking Earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere , 2014, Global change biology.

[34]  C. Heald,et al.  The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates , 2013 .

[35]  Steven Dobbie,et al.  The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds , 2013, Nature.

[36]  J. Comstock,et al.  Dust and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western U.S. , 2013, Science.

[37]  S. Kreidenweis,et al.  The impact of rain on ice nuclei populations at a forested site in Colorado , 2013 .

[38]  Corinna Hoose,et al.  Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments , 2012 .

[39]  S. Kreidenweis,et al.  Biogenic ice nuclei in boundary layer air over two U.S. High Plains agricultural regions , 2012 .

[40]  B. Murray,et al.  Ice nucleation by particles immersed in supercooled cloud droplets. , 2012, Chemical Society reviews.

[41]  Paul J. DeMott,et al.  A Particle-Surface-Area-Based Parameterization of Immersion Freezing on Desert Dust Particles , 2012 .

[42]  H. Bauer,et al.  Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen , 2012 .

[43]  C. Morris,et al.  Biological residues define the ice nucleation properties of soil dust , 2011 .

[44]  R. Engelmann,et al.  Contrasting the impact of aerosols at northern and southern midlatitudes on heterogeneous ice formation , 2011 .

[45]  Michael Schulz,et al.  Global dust model intercomparison in AeroCom phase I , 2011 .

[46]  Martyn P. Chipperfield,et al.  Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model , 2010 .

[47]  Jen-Ping Chen,et al.  A Classical-Theory-Based Parameterization of Heterogeneous Ice Nucleation by Mineral Dust, Soot, and Biological Particles in a Global Climate Model , 2010 .

[48]  P. Formenti,et al.  Evidence of internal mixing of African dust and biomass burning particles by individual particle analysis using electron beam techniques , 2010 .

[49]  S. Burrows,et al.  How important is biological ice nucleation in clouds on a global scale? , 2010 .

[50]  M. D. Petters,et al.  Predicting global atmospheric ice nuclei distributions and their impacts on climate , 2010, Proceedings of the National Academy of Sciences.

[51]  C. Seman,et al.  Potential impacts from biological aerosols on ensembles of continental clouds simulated numerically , 2009 .

[52]  Paul J. DeMott,et al.  In situ detection of biological particles in cloud ice-crystals , 2009 .

[53]  S. Martin,et al.  Relative roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon basin , 2009 .

[54]  P. Formenti,et al.  Size distribution, shape, and composition of mineral dust aerosols collected during the African Monsoon Multidisciplinary Analysis Special Observation Period 0: Dust and Biomass-Burning , 2008 .

[55]  M. Skidmore,et al.  Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow , 2008, Proceedings of the National Academy of Sciences.

[56]  Volker Ebert,et al.  The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols , 2008 .

[57]  David C. Sands,et al.  Ubiquity of Biological Ice Nucleators in Snowfall , 2008, Science.

[58]  Albert Ansmann,et al.  Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment , 2008 .

[59]  G. Vali,et al.  Microbiology and atmospheric processes: the role of biological particles in cloud physics , 2007 .

[60]  Alan M. Jones,et al.  The effects of meteorological factors on atmospheric bioaerosol concentrations--a review. , 2004, The Science of the total environment.

[61]  L. Barker,et al.  A Comparison of Nine Confidence Intervals for a Poisson Parameter When the Expected Number of Events is ≤ 5 , 2002 .

[62]  Y. Balkanski,et al.  Modeling the mineralogy of atmospheric dust sources , 1999 .

[63]  Louise Poissant Part I , 1996, Leonardo.

[64]  Gabor Vali,et al.  Biogenic Ice Nuclei. Part II: Bacterial Sources , 1976 .

[65]  G. Vali,et al.  Biogenic Ice Nuclei: Part I. Terrestrial and Marine Sources , 1976 .

[66]  G. Vali,et al.  Freezing nuclei in marine waters , 1975 .

[67]  G. Vali,et al.  World-wide Source of Leaf-derived Freezing Nuclei , 1973, Nature.

[68]  G. Vali,et al.  Atmospheric Ice Nuclei from Decomposing Vegetation , 1972, Nature.

[69]  G. Vali Quantitative Evaluation of Experimental Results an the Heterogeneous Freezing Nucleation of Supercooled Liquids , 1971 .

[70]  H. Woodrow,et al.  : A Review of the , 2018 .

[71]  Timothy P. Wright,et al.  A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: A comparison of 17 ice nucleation measurement techniques , 2014 .

[72]  A. Bertram,et al.  High concentrations of biological aerosol particles , 2013 .

[73]  T. Stocker Climate change 2013 : the physical science basis : Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2013 .

[74]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[75]  S. Schiavon,et al.  Climate change 2007 : the physical science basis : contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[76]  Richard E. Lee,et al.  Biological ice nucleation and its applications. , 1995 .