Simulation of aerosols and gas-phase species over Europe with the Polyphemus system. Part II: Model sensitivity analysis for 2001

[1]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[2]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[3]  I. Troen,et al.  A simple model of the atmospheric boundary layer; sensitivity to surface evaporation , 1986 .

[4]  D. E. Spiel,et al.  A Model of Marine Aerosol Generation Via Whitecaps and Wave Disruption , 1986 .

[5]  M. Wesely Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models , 1989 .

[6]  W. Stockwell,et al.  The second generation regional acid deposition model chemical mechanism for regional air quality modeling , 1990 .

[7]  F. Potra,et al.  Sensitivity analysis for atmospheric chemistry models via automatic differentiation , 1997 .

[8]  F. Kirchner,et al.  A new mechanism for regional atmospheric chemistry modeling , 1997 .

[9]  M. Smith,et al.  The sea spray generation function , 1998 .

[10]  A. Saltelli,et al.  Sensitivity analysis: Could better methods be used? , 1999 .

[11]  A. Nenes,et al.  Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models , 1999 .

[12]  L. Pirjola,et al.  FORMATION OF SULPHURIC ACID AEROSOLS AND CLOUD CONDENSATION NUCLEI: AN EXPRESSION FOR SIGNIFICANT NUCLEATION AND MODEL COMPRARISON , 1999 .

[13]  D. Byun Science algorithms of the EPA Models-3 community multi-scale air quality (CMAQ) modeling system , 1999 .

[14]  D. Jacob Heterogeneous chemistry and tropospheric ozone , 2000 .

[15]  Spyros N. Pandis,et al.  Optimizing model performance: variable size resolution in cloud chemistry modeling , 2001 .

[16]  J. Lamarque,et al.  A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2 , 2001 .

[17]  Jos Lelieveld,et al.  Gas/aerosol partitioning: 1. A computationally efficient model , 2002 .

[18]  M. Kulmala,et al.  Parametrization of ternary nucleation rates for H2SO4‐NH3‐H2O vapors , 2002 .

[19]  Greg Yarwood,et al.  The decoupled direct method for sensitivity analysis in a three-dimensional air quality model--implementation, accuracy, and efficiency. , 2002, Environmental science & technology.

[20]  G. Myhre,et al.  Modeling the Annual Cycle of Sea Salt in the Global 3D Model Oslo CTM2: Concentrations, Fluxes, and Radiative Impact. , 2002 .

[21]  Robert Vet,et al.  A revised parameterization for gaseous dry deposition in air-quality models , 2003 .

[22]  F. Binkowski,et al.  Models-3 community multiscale air quality (cmaq) model aerosol component , 2003 .

[23]  B. Vogel,et al.  Impact of the heterogeneous hydrolysis of N2O5 on chemistry and nitrate aerosol formation in the lower troposphere under photosmog conditions , 2003 .

[24]  Richard T. Cederwall,et al.  Precipitation scavenging of atmospheric aerosols for emergency response applications: testing an updated model with new real-time data , 2004 .

[25]  Martin Adams,et al.  Inventory Review 2004. Emission data reported to CLRTAP and under the NEC Directive. , 2004 .

[26]  J. Seinfeld,et al.  Development and application of the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) , 2004 .

[27]  Peter Wåhlin,et al.  A European aerosol phenomenology—1: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe , 2004 .

[28]  A. Laskin,et al.  Heterogeneous chemistry of individual mineral dust particles from different dust source regions: the importance of particle mineralogy , 2004 .

[29]  Mehmet T. Odman,et al.  Nonlinearity in atmospheric response: A direct sensitivity analysis approach , 2004 .

[30]  D. Jacob,et al.  Impact of new laboratory studies of N2O5 hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH , 2005, Geophysical Research Letters.

[31]  Erratum to “Heterogeneous chemistry of individual mineral dust particles from different dust source regions: the importance of particle mineralogy”: [Atmos. Environ. 38 (36) (2004) 6253–6261] , 2005 .

[32]  V. Mallet,et al.  Uncertainty in a chemistry-transport model due to physical parameterizations and numerical approximations: An ensemble approach applied to ozone modeling , 2006 .

[33]  P. Thunis,et al.  The sensitivity of aerosol in Europe to two different emission inventories and temporal distribution of emissions , 2006 .

[34]  R. Vautard,et al.  A model evaluation of coarse-mode nitrate heterogeneous formation on dust particles , 2006 .

[35]  Yongtao Hu,et al.  Decoupled direct 3D sensitivity analysis for particulate matter (DDM-3D/PM) , 2006 .

[36]  Edouard Debry,et al.  Atmospheric Chemistry and Physics Technical Note : A new SIze REsolved Aerosol Model ( SIREAM ) , 2007 .

[37]  B. Sportisse,et al.  Simulation of aerosols and gas-phase species over Europe with the POLYPHEMUS system: Part I-Model-to-data comparison for 2001 , 2007 .

[38]  Jerry M. Davis,et al.  Parameterization of N 2 O 5 reaction probabilities on the surface of particles containing ammonium, sulfate, and nitrate , 2007 .

[39]  John P. Dawson,et al.  Sensitivity of PM 2.5 to climate in the Eastern US: a modeling case study , 2007 .

[40]  Lin Wu,et al.  Technical Note: The air quality modeling system Polyphemus , 2007 .

[41]  Yelva Roustan,et al.  Simulation of aerosol optical properties over Europe with a 3-D size-resolved aerosol model: comparisons with AERONET data , 2008 .

[42]  Bruno Sportisse,et al.  MICS Asia Phase II - Sensitivity to the aerosol module , 2007, 0704.3190.

[43]  H. Ueda,et al.  MICS-Asia II: Impact of global emissions on regional air quality in Asia , 2008 .

[44]  R. Derwent,et al.  Sensitivity of modelled sulphate and nitrate aerosol to cloud, pH and ammonia emissions , 2009 .