Bayesian high resolution image reconstruction with incomplete multisensor low resolution systems

We consider the problem of reconstructing a high-resolution image from an incomplete set of undersampled, shifted, degraded frames with subpixel displacement errors. We derive mathematical expressions for the calculation of the maximum a posteriori (MAP) estimate of the high resolution image given the low resolution observed images. We also examine the role played by the prior model when an incomplete set of low resolution images is used. Finally, the proposed method is tested on real and synthetic images.