A random walk model for infection on graphs: spread of epidemics & rumours with mobile agents

We address the question of understanding the effect of the underlying network topology on the spread of a virus and the dissemination of information when users are mobile performing independent random walks on a graph. To this end, we propose a simple model of infection that enables to study the coincidence time of two random walkers on an arbitrary graph. By studying the coincidence time of a susceptible and an infected individual both moving in the graph we obtain estimates of the infection probability. The main result of this paper is to pinpoint the impact of the network topology on the infection probability. More precisely, we prove that for homogeneous graphs including regular graphs and the classical Erdős–Rényi model, the coincidence time is inversely proportional to the number of nodes in the graph. We then study the model on power-law graphs, that exhibit heterogeneous connectivity patterns, and show the existence of a phase transition for the coincidence time depending on the parameter of the power-law of the degree distribution. We finally undertake a preliminary analysis for the case with k random walkers and provide upper bounds on the convergence time for both the complete graph and regular graphs.

[1]  D. Aldous Meeting times for independent Markov chains , 1991 .

[2]  L. Massoulié,et al.  Epidemics and Rumours in Complex Networks: From microscopic to macroscopic dynamics , 2009 .

[3]  Jon M. Kleinberg,et al.  Spatial gossip and resource location protocols , 2001, JACM.

[4]  Anne-Marie Kermarrec,et al.  Peer counting and sampling in overlay networks: random walk methods , 2006, PODC '06.

[5]  Joel Friedman,et al.  A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.

[6]  Ayalvadi Ganesh,et al.  A random walk model for infection on graphs , 2009, VALUETOOLS.

[7]  Alan M. Frieze,et al.  Multiple Random Walks in Random Regular Graphs , 2009, SIAM J. Discret. Math..

[8]  A. Ganesh,et al.  Efficient routeing in Poisson small-world networks , 2006, Journal of Applied Probability.

[9]  Albert-László Barabási,et al.  Understanding the Spreading Patterns of Mobile Phone Viruses , 2009, Science.

[10]  Guanhua Yan,et al.  Bluetooth worm propagation: mobility pattern matters! , 2007, ASIACCS '07.

[11]  FaloutsosMichalis,et al.  On power-law relationships of the Internet topology , 1999 .

[12]  M. Karonski Collisions among Random Walks on a Graph , 1993 .

[13]  Marc Lelarge,et al.  Marketing in a Random Network , 2008, NET-COOP.

[14]  László Lovász,et al.  Random Walks on Graphs: A Survey , 1993 .

[15]  L. Asz Random Walks on Graphs: a Survey , 2022 .

[16]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[17]  Anne-Marie Kermarrec,et al.  Peer counting and sampling in overlay networks based on random walks , 2007, Distributed Computing.

[18]  Daryl J. Daley,et al.  Epidemic Modelling: An Introduction , 1999 .

[19]  Christophe Diot,et al.  Impact of Human Mobility on Opportunistic Forwarding Algorithms , 2007, IEEE Transactions on Mobile Computing.

[20]  B. Mohar Some applications of Laplace eigenvalues of graphs , 1997 .

[21]  Jean Mairesse,et al.  Queues, stores, and tableaux , 2005, ArXiv.

[22]  B. Pittel On spreading a rumor , 1987 .

[23]  Dr A. Alavi,et al.  Statistical Mechanics and its applications , 2007 .

[24]  Brian D. Noble,et al.  Modeling epidemic spreading in mobile environments , 2005, WiSe '05.

[25]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[26]  David R. Karger,et al.  Simple Efficient Load-Balancing Algorithms for Peer-to-Peer Systems , 2004, SPAA '04.

[27]  Maziar Nekovee,et al.  Worm epidemics in wireless ad hoc networks , 2007, ArXiv.

[28]  Christos Gkantsidis,et al.  Hybrid search schemes for unstructured peer-to-peer networks , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[29]  Maziar Nekovee,et al.  The Opportunistic Transmission of Wireless Worms between Mobile Devices , 2008, ArXiv.

[30]  J. Kleinberg Computing: the wireless epidemic. , 2007, Nature.

[31]  Nilanjana Datta,et al.  Random walks on a complete graph: a model for infection , 2004 .

[32]  Donald F. Towsley,et al.  The effect of network topology on the spread of epidemics , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[33]  M.,et al.  Efficient routing in Poisson small-world networks , 2006 .

[34]  Béla Bollobás,et al.  The Diameter of a Scale-Free Random Graph , 2004, Comb..

[35]  Alain Bui,et al.  Random Walks in Distributed Computing: A Survey , 2004, IICS.

[36]  Stefan Saroiu,et al.  A preliminary investigation of worm infections in a bluetooth environment , 2006, WORM '06.

[37]  Paul G. Spirakis,et al.  The infection time of graphs , 2006, Discret. Appl. Math..

[38]  Jennifer L. Welch,et al.  Random walk for self-stabilizing group communication in ad hoc networks , 2002, IEEE Transactions on Mobile Computing.

[39]  Neal Leavitt,et al.  Mobile phones: the next frontier for hackers? , 2005, Computer.

[40]  Fan Chung Graham,et al.  The Average Distance in a Random Graph with Given Expected Degrees , 2004, Internet Math..

[41]  Jennifer L. Welch,et al.  Random Walk for Self-Stabilizing Group Communication in Ad Hoc Networks , 2006, IEEE Trans. Mob. Comput..

[42]  Jon M. Kleinberg,et al.  The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.

[43]  F. Chung,et al.  The average distances in random graphs with given expected degrees , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Jeffrey O. Kephart,et al.  Directed-graph epidemiological models of computer viruses , 1991, Proceedings. 1991 IEEE Computer Society Symposium on Research in Security and Privacy.