On estimation and influence diagnostics for the Grubbs' model under heavy-tailed distributions

The Grubbs' measurement model is frequently used to compare several measuring devices. It is common to assume that the random terms have a normal distribution. However, such assumption makes the inference vulnerable to outlying observations, whereas scale mixtures of normal distributions have been an interesting alternative to produce robust estimates, keeping the elegancy and simplicity of the maximum likelihood theory. The aim of this paper is to develop an EM-type algorithm for the parameter estimation, and to use the local influence method to assess the robustness aspects of these parameter estimates under some usual perturbation schemes. In order to identify outliers and to criticize the model building we use the local influence procedure in a study to compare the precision of several thermocouples.

[1]  Daniel Gianola,et al.  Robust Linear Mixed Models with Normal/Independent Distributions and Bayesian MCMC Implementation , 2003 .

[2]  C. M. Theobald,et al.  Comparative Calibration, Linear Structural Relationships and Congeneric Measurements , 1978 .

[3]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[4]  Robert E. Kass,et al.  Laplace's Method , 2006 .

[5]  Jeremy MG Taylor,et al.  Robust Statistical Modeling Using the t Distribution , 1989 .

[6]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[7]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[8]  Heleno Bolfarine Structural comparative calibration using the EM algorithm , 1995 .

[9]  M. West On scale mixtures of normal distributions , 1987 .

[10]  K. Lange,et al.  Normal/Independent Distributions and Their Applications in Robust Regression , 1993 .

[11]  Chuanhai Liu Bayesian robust multivariate linear regression with incomplete data , 1996 .

[12]  Felipe Osorio,et al.  Assessment of local influence in elliptical linear models with longitudinal structure , 2007, Comput. Stat. Data Anal..

[13]  V D Barnett Simultaneous pairwise linear structural relationships. , 1969, Biometrics.

[14]  Victor H. Lachos,et al.  Influence diagnostics for the Grubbs's model , 2007 .

[15]  Yat Sun Poon,et al.  Conformal normal curvature and assessment of local influence , 1999 .

[16]  Edward J. Bedrick An Efficient Scores Test for Comparing Several Measuring Devices , 2001 .

[17]  Ying Nian Wu,et al.  Efficient Algorithms for Robust Estimation in Linear Mixed-Effects Models Using the Multivariate t Distribution , 2001 .

[18]  Barnett Vd Simultaneous pairwise linear structural relationships. , 1969 .

[19]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[20]  Andre Lucas,et al.  Robustness of the student t based M-estimator , 1997 .

[21]  Leon Jay Gleser,et al.  Inference about comparative precision in linear structural relationships , 1986 .

[22]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[23]  D. Gianola,et al.  Bayesian Longitudinal Data Analysis with Mixed Models and Thick-tailed Distributions using MCMC , 2004 .

[24]  Sik-Yum Lee,et al.  Local influence for incomplete data models , 2001 .

[25]  S. Chatterjee Sensitivity analysis in linear regression , 1988 .

[26]  Ronald Christensen,et al.  Tests for Precision and Accuracy of Multiple Measuring Devices , 1993 .

[27]  Frank E. Grubbs,et al.  On Estimating Precision of Measuring Instruments and Product Variability , 1948 .

[28]  Heleno Bolfarine,et al.  Local Influence in Comparative Calibration Models Under Elliptical t ‐Distributions , 2005, Biometrical journal. Biometrische Zeitschrift.

[29]  Xiao-Li Meng,et al.  Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .

[30]  M. Steel,et al.  Multivariate Student -t Regression Models : Pitfalls and Inference , 1999 .

[31]  Liang Xu,et al.  Influence analyses of nonlinear mixed-effects models , 2004, Comput. Stat. Data Anal..

[32]  Frank E. Grubbs,et al.  Errors of Measurement, Precision, Accuracy and the Statistical Comparison of Measuring Instruments , 1973 .

[33]  R. Cook Assessment of Local Influence , 1986 .

[34]  Frank E. Grubbs,et al.  Grubbs' Estimators (Precision and Accuracy of Measurement) , 2004 .

[35]  Heleno Bolfarine,et al.  Local Influence in Comparative Calibration Models , 2002 .

[36]  J. A. Díaz-García,et al.  SENSITIVITY ANALYSIS IN LINEAR REGRESSION , 2022 .

[37]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .