On estimation and influence diagnostics for the Grubbs' model under heavy-tailed distributions
暂无分享,去创建一个
[1] Daniel Gianola,et al. Robust Linear Mixed Models with Normal/Independent Distributions and Bayesian MCMC Implementation , 2003 .
[2] C. M. Theobald,et al. Comparative Calibration, Linear Structural Relationships and Congeneric Measurements , 1978 .
[3] S. Weisberg,et al. Residuals and Influence in Regression , 1982 .
[4] Robert E. Kass,et al. Laplace's Method , 2006 .
[5] Jeremy MG Taylor,et al. Robust Statistical Modeling Using the t Distribution , 1989 .
[6] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[7] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[8] Heleno Bolfarine. Structural comparative calibration using the EM algorithm , 1995 .
[9] M. West. On scale mixtures of normal distributions , 1987 .
[10] K. Lange,et al. Normal/Independent Distributions and Their Applications in Robust Regression , 1993 .
[11] Chuanhai Liu. Bayesian robust multivariate linear regression with incomplete data , 1996 .
[12] Felipe Osorio,et al. Assessment of local influence in elliptical linear models with longitudinal structure , 2007, Comput. Stat. Data Anal..
[13] V D Barnett. Simultaneous pairwise linear structural relationships. , 1969, Biometrics.
[14] Victor H. Lachos,et al. Influence diagnostics for the Grubbs's model , 2007 .
[15] Yat Sun Poon,et al. Conformal normal curvature and assessment of local influence , 1999 .
[16] Edward J. Bedrick. An Efficient Scores Test for Comparing Several Measuring Devices , 2001 .
[17] Ying Nian Wu,et al. Efficient Algorithms for Robust Estimation in Linear Mixed-Effects Models Using the Multivariate t Distribution , 2001 .
[18] Barnett Vd. Simultaneous pairwise linear structural relationships. , 1969 .
[19] G. McLachlan,et al. The EM algorithm and extensions , 1996 .
[20] Andre Lucas,et al. Robustness of the student t based M-estimator , 1997 .
[21] Leon Jay Gleser,et al. Inference about comparative precision in linear structural relationships , 1986 .
[22] S. Kotz,et al. Symmetric Multivariate and Related Distributions , 1989 .
[23] D. Gianola,et al. Bayesian Longitudinal Data Analysis with Mixed Models and Thick-tailed Distributions using MCMC , 2004 .
[24] Sik-Yum Lee,et al. Local influence for incomplete data models , 2001 .
[25] S. Chatterjee. Sensitivity analysis in linear regression , 1988 .
[26] Ronald Christensen,et al. Tests for Precision and Accuracy of Multiple Measuring Devices , 1993 .
[27] Frank E. Grubbs,et al. On Estimating Precision of Measuring Instruments and Product Variability , 1948 .
[28] Heleno Bolfarine,et al. Local Influence in Comparative Calibration Models Under Elliptical t ‐Distributions , 2005, Biometrical journal. Biometrische Zeitschrift.
[29] Xiao-Li Meng,et al. Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .
[30] M. Steel,et al. Multivariate Student -t Regression Models : Pitfalls and Inference , 1999 .
[31] Liang Xu,et al. Influence analyses of nonlinear mixed-effects models , 2004, Comput. Stat. Data Anal..
[32] Frank E. Grubbs,et al. Errors of Measurement, Precision, Accuracy and the Statistical Comparison of Measuring Instruments , 1973 .
[33] R. Cook. Assessment of Local Influence , 1986 .
[34] Frank E. Grubbs,et al. Grubbs' Estimators (Precision and Accuracy of Measurement) , 2004 .
[35] Heleno Bolfarine,et al. Local Influence in Comparative Calibration Models , 2002 .
[36] J. A. Díaz-García,et al. SENSITIVITY ANALYSIS IN LINEAR REGRESSION , 2022 .
[37] J. Magnus,et al. Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .