Expanding the applicability of Inexact Newton Methods under Smale's (α, γ)-theory

We present a new semilocal convergence analysis for an Inexact Newton Method (INM) using Smale's (@a,@c)-theory. Our approach is based on the concept of center-@c"0-condition. Developed sufficient convergence conditions are weaker and the error estimates are tighter than those proposed in earlier studies such as Shen and Li [30,31], Guo [22], Smale [33-35], Morini [26], Argyros [2,8,9] and Argyros and Hilout [12]. Numerical examples illustrating the theoretical results are also provided in this study.

[1]  José Antonio Ezquerro,et al.  Generalized differentiability conditions for Newton's method , 2002 .

[2]  Wang Xinghua,et al.  Convergence of Newton's method and inverse function theorem in Banach space , 1999 .

[3]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[4]  S. Smale The fundamental theorem of algebra and complexity theory , 1981 .

[5]  Ioannis K. Argyros,et al.  Extending the Newton-Kantorovich hypothesis for solving equations , 2010, J. Comput. Appl. Math..

[6]  Petko D. Proinov New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems , 2010, J. Complex..

[7]  Jean-Claude Yakoubsohn Finding Zeros of Analytic Functions : : Theory for Secant Type Methods , 1999 .

[8]  M. A. Hernández A modification of the classical Kantorovich conditions for Newton's method , 2001 .

[9]  Chong Li,et al.  Smale's α-theory for inexact Newton methods under the γ-condition☆ , 2010 .

[10]  I. Argyros Computational Theory of Iterative Methods , 2014 .

[11]  Ioannis K. Argyros,et al.  Computational Theory of Iterative Methods, Volume 15 , 2007 .

[12]  S. Smale Newton’s Method Estimates from Data at One Point , 1986 .

[13]  Jean-Claude Yakoubsohn Finding Zeros of Analytic Functions: alpha Theory for Secant Type Methods , 1999, J. Complex..

[14]  Ioannis K. Argyros,et al.  Improved local convergence of Newton's method under weak majorant condition , 2012, J. Comput. Appl. Math..

[15]  Xinghua Wang,et al.  Convergence of Newton's method and inverse function theorem in Banach space , 1999, Math. Comput..

[16]  Xinghua Wang,et al.  Convergence of Newton's method and uniqueness of the solution of equations in Banach space , 2000 .

[17]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[18]  Chong Li,et al.  Kantorovich-type convergence criterion for inexact Newton methods , 2009 .

[19]  Benedetta Morini,et al.  Convergence behaviour of inexact Newton methods , 1999, Math. Comput..

[20]  T. Ypma Local Convergence of Inexact Newton Methods , 1984 .

[21]  X. Wang ON DOMINATING SEQUENCE METHOD IN THE POINT ESTIMATE AND SMALE THEOREM , 1990 .

[22]  Steve Smale,et al.  Complexity theory and numerical analysis , 1997, Acta Numerica.

[23]  Miguel Ángel Hernández,et al.  Newton-type methods of high order and domains of semilocal and global convergence , 2009, Appl. Math. Comput..

[24]  Ioannis K. Argyros Relations Between Forcing Sequences and Inexact Newton Iterates in Banach Space , 1999, Computing.

[25]  Ioannis K. Argyros A new convergence theorem for the inexact Newton methods based on assumptions involving the second Fréchet derivative , 1999 .

[26]  Jean-Pierre Dedieu,et al.  Points fixes, zéros et la méthode de Newton , 2006 .

[27]  Jose M. Gutikez A new semilocal convergence theorem for Newton's method , 1997 .

[28]  Guo,et al.  ON SEMILOCAL CONVERGENCE OF INEXACT NEWTON METHODS , 2007 .

[29]  Ioannis K. Argyros,et al.  A unifying local–semilocal convergence analysis and applications for two-point Newton-like methods in Banach space , 2004 .

[30]  Ioannis K. Argyros,et al.  On the Newton-Kantorovich hypothesis for solving equations , 2004 .

[31]  Miguel Ángel Hernández,et al.  An improvement of the region of accessibility of Chebyshev's method from Newton's method , 2009, Math. Comput..

[32]  S. Amat,et al.  Adaptive Approximation of Nonlinear Operators , 2004 .

[33]  Petko D. Proinov General local convergence theory for a class of iterative processes and its applications to Newton's method , 2009, J. Complex..

[34]  Ioannis K. Argyros,et al.  A semilocal convergence analysis for directional Newton methods , 2010, Math. Comput..

[35]  I. Argyros,et al.  Local Convergence of Newton ’ s Method Under a Weak Gamma Condition , 2007 .

[36]  W. Deren,et al.  The theory of Smale's point estimation and its applications , 1995 .

[37]  M. A. Hernández The Newton Method for Operators with Hölder Continuous First Derivative , 2001 .

[38]  Y. Cho,et al.  Numerical Methods for Equations and its Applications , 2012 .

[39]  Ioannis K. Argyros,et al.  Weaker conditions for the convergence of Newton's method , 2012, J. Complex..

[40]  ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION , 2008 .

[41]  Steve Smale,et al.  Algorithms for Solving Equations , 2010 .