Inverse spectral design of Kerr microcomb pulses

Non-linear wave mixing in optical microresonators offers new perspectives for the realization of compact optical frequency ‘microcombs’, holding many promising applications. These typically rely on dissipative soliton formation in driven nonlinear passive cavities with anomalous dispersion, yielding a sech pulse shape. Here, we use a genetic algorithm to ‘invert’ the Lugiato-Lefever equation that models these systems, in order to find the optimum arbitrary dispersion profile needed to achieve a microcomb with a targeted spectral shape. We consider several use cases, such as generating near gaussian pulses, or a telecom-optimized microcomb, as well as optimize a dispersive wave position and power.

[1]  T. Kippenberg,et al.  Self-referenced photonic chip soliton Kerr frequency comb , 2016, Light: Science & Applications.

[2]  Erwan Lucas,et al.  Massively parallel coherent laser ranging using a soliton microcomb , 2019, Nature.

[3]  K. Srinivasan,et al.  Terahertz-Rate Kerr-Microresonator Optical Clockwork , 2018, Physical Review X.

[4]  V. Brasch,et al.  Photonic chip–based optical frequency comb using soliton Cherenkov radiation , 2014, Science.

[5]  S. Coen,et al.  Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer , 2010 .

[6]  C. Koos,et al.  Ultrafast optical ranging using microresonator soliton frequency combs , 2017, Science.

[7]  Jelena Vucković,et al.  Inverse design in nanophotonics , 2018, Nature Photonics.

[8]  Yanne K. Chembo,et al.  Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes , 2013, 1308.2542.

[9]  P. Andrekson,et al.  Dissipative solitons in photonic molecules , 2021, Nature Photonics.

[10]  Manoj Kumar,et al.  Genetic Algorithm: Review and Application , 2010 .

[11]  Scott A. Diddams,et al.  Searching for Exoplanets Using a Microresonator Astrocomb , 2018, Nature Photonics.

[12]  T. Sylvestre,et al.  Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. , 2012, Optics letters.

[13]  K. Vahala,et al.  Dirac solitons in optical microresonators , 2020, 2021 Conference on Lasers and Electro-Optics (CLEO).

[14]  K. Srinivasan,et al.  Spontaneous pulse formation in edgeless photonic crystal resonators , 2020, Nature Photonics.

[15]  S. Wabnitz,et al.  On the numerical simulation of Kerr frequency combs using coupled mode equations , 2013, 1307.3428.

[16]  Miles H. Anderson,et al.  A microphotonic astrocomb , 2017, Nature Photonics.

[17]  K. Vahala,et al.  Soliton microcomb range measurement , 2017, Science.

[18]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2018, Nature.

[19]  Miro Erkintalo,et al.  Universal scaling laws of Kerr frequency combs. , 2013, Optics letters.

[20]  M. Gorodetsky,et al.  Frequency combs and platicons in optical microresonators with normal GVD. , 2015, Optics express.

[21]  J. Vučković,et al.  Inverse Design of Microresonator Dispersion for Nonlinear Optics , 2020, 2020 Conference on Lasers and Electro-Optics (CLEO).

[22]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[23]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[24]  R. Lefever,et al.  Spatial dissipative structures in passive optical systems. , 1987, Physical review letters.

[25]  Ian A. D. Williamson,et al.  Inverse design of photonic crystals through automatic differentiation , 2020, ACS Photonics.

[26]  Miles H. Anderson,et al.  Microresonator-based solitons for massively parallel coherent optical communications , 2016, Nature.