격자볼츠만 법을 사용한 히브진동 운동하는 평판에서의 추력발생 연구

Insect and birds in nature flap their wings to generate fluid dynamic forces that are required for locomotion. To develop a feasible flapping MAV, it is of crucially important to study the fundamental relations between flapping motion and thrust generation. In this paper, the onset conditions of the thrust generation of a heaving flat plate is investigated using a Lattice-Boltzmann method. For a fixed heaving amplitude of h/C=0.5, the effect of reduced frequency on the thrust generation is investigated. For several values of heaving amplitude(h/C=0.25, 0.325, 0.50), the effect of reduced frequency on the thrust generation is also investigated. It can be said that Strouhal number is more important rather than reduced frequency in case of thrust generation. It is found that the critical Strouhal number over which the flat plate starts to produce thrust is around 0.1. Thrust is an exponential function of the Strouhal number.