Superconducting Gap and Symmetry in FeSe 1- x Te x Studied by Specific Heat in Magnetic Fields

In order to investigate details of the superconducting (SC) gap in the iron-chalcogenide superconductors, the specific heat, C, of FeSe1−xTex with x = 0.6–1 has been measured in magnetic fields. Using the two-gap model, it has been found that the smaller SC gap is significantly depressed by the application of magnetic field, resulting in the increase of the slope of the C/T vs T2 plot at low temperatures. From the specific-heat measurements at very low temperatures down to 0.4 K, it has been found that the enhancement of the residual electronic-specific-heat-coefficient in the ground state, γ0, by the application of magnetic field is much smaller than that expected for superconductors with the typical s- or d-wave SC paring symmetry, which is in sharp contrast to the significant enhancement of γ0 observed in the iron-pnictide superconductors. These results are discussed in relation to the multi-band effect in the iron-based superconductors.

[1]  Y. Koike,et al.  Thermal Conductivity and Annealing Effects in the Iron-Based Superconductor FeSe 0.3 Te 0.7 , 2013, 1306.2686.

[2]  Yoshizawa Masahito,et al.  Effects of Annealing under Tellurium Vapor for Fe1.03Te0.8Se0.2 Single Crystals , 2013 .

[3]  X. -. Wang,et al.  Specific heat versus field for LiFe1−xCuxAs , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  K. Hashimoto,et al.  Octet-Line Node Structure of Superconducting Order Parameter in KFe2As2 , 2012, Science.

[5]  Noji Takashi,et al.  Specific-Heat Study of Superconducting and Normal States in FeSe1-xTex (0.6≤x ≤1) Single Crystals: Strong-Coupling Superconductivity, Strong Electron-Correlation, and Inhomogeneity , 2012 .

[6]  H. Kontani,et al.  Self-consistent vertex correction analysis for iron-based superconductors: mechanism of Coulomb interaction-driven orbital fluctuations. , 2012, Physical review letters.

[7]  S. Demura,et al.  Phase diagram and oxygen annealing effect of FeTe1-xSex iron-based superconductor , 2011, 1111.6472.

[8]  R. Prozorov,et al.  Precision global measurements of London penetration depth in FeTe 0.58 Se 0.42 , 2011 .

[9]  A. Maeda,et al.  Anomalous temperature dependence of the superfluid density caused by a dirty-to-clean crossover in superconducting FeSe 0.4 Te 0.6 single crystals , 2011, 1106.1485.

[10]  J. Hu,et al.  Calorimetric evidence of strong-coupling multiband superconductivity in Fe(Te0.57Se0.43) single crystal , 2011, 1103.2961.

[11]  K. Tanigaki,et al.  Evidence for line nodes in the energy gap of the overdoped Ba(Fe1−xCox)2As2from low-temperature specific heat measurements , 2011, 1103.1300.

[12]  N. Yeh,et al.  Measurement of a sign-changing two-gap superconducting phase in electron-doped Ba(Fe(1-x)Co(x))2As2 single crystals using scanning tunneling spectroscopy. , 2010, Physical review letters.

[13]  P. Toulemonde,et al.  Thermodynamic phase diagram of Fe(Se 0.5 Te 0.5 ) single crystals in fields up to 28 tesla , 2010, 1010.0493.

[14]  K. Hashimoto,et al.  Line nodes in the energy gap of superconducting BaFe2(As1-xPx)2 single crystals as seen via penetration depth and thermal conductivity , 2010 .

[15]  H. Takagi,et al.  Unconventional s-Wave Superconductivity in Fe(Se,Te) , 2010, Science.

[16]  T. Xiang,et al.  Anisotropic structure of the order parameter in FeSe0.45Te0.55 revealed by angle-resolved specific heat , 2010, Nature communications.

[17]  Y. Koike,et al.  Growth, Annealing Effects on Superconducting and Magnetic Properties, and Anisotropy of FeSe1-xTex (0.5≤x≤1) Single Crystals , 2010 .

[18]  A. Wisniewski,et al.  Anisotropic superconducting properties of single-crystalline FeSe0:5Te0:5 , 2010, 1004.0812.

[19]  R. Schaub,et al.  Strong electron correlations in the normal state of the iron-based FeSe0.42Te0.58 superconductor observed by angle-resolved photoemission spectroscopy. , 2010, Physical review letters.

[20]  D. M. Paul,et al.  Muon-spin-spectroscopy study of the penetration depth of FeTe0.5Se0.5 , 2010, 1003.2726.

[21]  G. Gu,et al.  Electronic Correlations and Unusual Superconducting Response in the Optical Properties of the Iron Chalcogenide FeTe0.55Se0.45 , 2010, 1002.4846.

[22]  H. Takagi,et al.  Evidence for dominant Pauli paramagnetic effect in the upper critical field of single-crystalline FeTe 0.6 Se 0.4 , 2010, 1001.4017.

[23]  Y. Bang Volovik effect in the ±s-wave state for the iron-based superconductors. , 2009, Physical review letters.

[24]  H. Kontani,et al.  Orbital-fluctuation-mediated superconductivity in iron pnictides: analysis of the five-orbital Hubbard-Holstein model. , 2009, Physical review letters.

[25]  L. Taillefer,et al.  Doping dependence of heat transport in the iron-arsenide superconductor Ba(Fe(1-x)Co(x))2As2: from isotropic to a strongly k-dependent gap structure. , 2009, Physical review letters.

[26]  S. Y. Li,et al.  Multigap nodeless superconductivity in FeSe x : Evidence from quasiparticle heat transport , 2009 .

[27]  A. Sefat,et al.  Bulk Superconductivity at 14 K in Single Crystals of Fe1+yTexSe1-x , 2009, 0902.1519.

[28]  J. Chu,et al.  Evidence for a nodal-line superconducting state in LaFePO. , 2008, Physical review letters.

[29]  Jiangping Hu,et al.  First-order magnetic and structural phase transitions in Fe1+ySexTe1-x , 2008, 0811.0195.

[30]  P. Canfield,et al.  Evidence for two-gap superconductivity in Ba 0.55 K 0.45 Fe 2 As 2 from directional point-contact Andreev-reflection spectroscopy , 2008, 0809.1566.

[31]  A. Amato,et al.  Evidence of nodeless superconductivity in FeSe 0.85 from a muon-spin-rotation study of the in-plane magnetic penetration depth , 2008 .

[32]  F. Hsu,et al.  Tellurium substitution effect on superconductivity of the α-phase iron selenide , 2008, 0808.0474.

[33]  M. Fang,et al.  Superconductivity close to magnetic instability in Fe ( Se 1 − x Te x ) 0.82 , 2008, 0807.4775.

[34]  M. Johannes,et al.  Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx. , 2008, Physical review letters.

[35]  David J. Singh,et al.  Density functional study of FeS, FeSe and FeTe: Electronic structure, magnetism, phonons and superconductivity , 2008, 0807.4312.

[36]  F. Hsu,et al.  Superconductivity in the PbO-type structure α-FeSe , 2008, Proceedings of the National Academy of Sciences.

[37]  T. Kondo,et al.  Momentum dependence of the superconducting gap in NdFeAsO0.9F0.1 single crystals measured by angle resolved photoemission spectroscopy. , 2008, Physical review letters.

[38]  X. Dai,et al.  Observation of Fermi-surface–dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2 , 2008, 0807.0419.

[39]  Z. Ren,et al.  Thorium-doping–induced superconductivity up to 56 K in Gd1−xThxFeAsO , 2008, 0804.4290.

[40]  R. Arita,et al.  Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1-xFx. , 2008, Physical review letters.

[41]  M. Du,et al.  Density functional study of LaFeAsO(1-x)F(x): a low carrier density superconductor near itinerant magnetism. , 2008, Physical review letters.

[42]  Yuxing Wang,et al.  Phenomenological two-gap model for the specific heat of MgB2 , 2001, cond-mat/0107196.

[43]  B. Mühlschlegel Die thermodynamischen Funktionen des Supraleiters , 1959 .