Superconducting Gap and Symmetry in FeSe 1- x Te x Studied by Specific Heat in Magnetic Fields
暂无分享,去创建一个
Y. Koike | T. Adachi | T. Noji | T. Kawamata | M. Imaizumi | T. Konno
[1] Y. Koike,et al. Thermal Conductivity and Annealing Effects in the Iron-Based Superconductor FeSe 0.3 Te 0.7 , 2013, 1306.2686.
[2] Yoshizawa Masahito,et al. Effects of Annealing under Tellurium Vapor for Fe1.03Te0.8Se0.2 Single Crystals , 2013 .
[3] X. -. Wang,et al. Specific heat versus field for LiFe1−xCuxAs , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.
[4] K. Hashimoto,et al. Octet-Line Node Structure of Superconducting Order Parameter in KFe2As2 , 2012, Science.
[5] Noji Takashi,et al. Specific-Heat Study of Superconducting and Normal States in FeSe1-xTex (0.6≤x ≤1) Single Crystals: Strong-Coupling Superconductivity, Strong Electron-Correlation, and Inhomogeneity , 2012 .
[6] H. Kontani,et al. Self-consistent vertex correction analysis for iron-based superconductors: mechanism of Coulomb interaction-driven orbital fluctuations. , 2012, Physical review letters.
[7] S. Demura,et al. Phase diagram and oxygen annealing effect of FeTe1-xSex iron-based superconductor , 2011, 1111.6472.
[8] R. Prozorov,et al. Precision global measurements of London penetration depth in FeTe 0.58 Se 0.42 , 2011 .
[9] A. Maeda,et al. Anomalous temperature dependence of the superfluid density caused by a dirty-to-clean crossover in superconducting FeSe 0.4 Te 0.6 single crystals , 2011, 1106.1485.
[10] J. Hu,et al. Calorimetric evidence of strong-coupling multiband superconductivity in Fe(Te0.57Se0.43) single crystal , 2011, 1103.2961.
[11] K. Tanigaki,et al. Evidence for line nodes in the energy gap of the overdoped Ba(Fe1−xCox)2As2from low-temperature specific heat measurements , 2011, 1103.1300.
[12] N. Yeh,et al. Measurement of a sign-changing two-gap superconducting phase in electron-doped Ba(Fe(1-x)Co(x))2As2 single crystals using scanning tunneling spectroscopy. , 2010, Physical review letters.
[13] P. Toulemonde,et al. Thermodynamic phase diagram of Fe(Se 0.5 Te 0.5 ) single crystals in fields up to 28 tesla , 2010, 1010.0493.
[14] K. Hashimoto,et al. Line nodes in the energy gap of superconducting BaFe2(As1-xPx)2 single crystals as seen via penetration depth and thermal conductivity , 2010 .
[15] H. Takagi,et al. Unconventional s-Wave Superconductivity in Fe(Se,Te) , 2010, Science.
[16] T. Xiang,et al. Anisotropic structure of the order parameter in FeSe0.45Te0.55 revealed by angle-resolved specific heat , 2010, Nature communications.
[17] Y. Koike,et al. Growth, Annealing Effects on Superconducting and Magnetic Properties, and Anisotropy of FeSe1-xTex (0.5≤x≤1) Single Crystals , 2010 .
[18] A. Wisniewski,et al. Anisotropic superconducting properties of single-crystalline FeSe0:5Te0:5 , 2010, 1004.0812.
[19] R. Schaub,et al. Strong electron correlations in the normal state of the iron-based FeSe0.42Te0.58 superconductor observed by angle-resolved photoemission spectroscopy. , 2010, Physical review letters.
[20] D. M. Paul,et al. Muon-spin-spectroscopy study of the penetration depth of FeTe0.5Se0.5 , 2010, 1003.2726.
[21] G. Gu,et al. Electronic Correlations and Unusual Superconducting Response in the Optical Properties of the Iron Chalcogenide FeTe0.55Se0.45 , 2010, 1002.4846.
[22] H. Takagi,et al. Evidence for dominant Pauli paramagnetic effect in the upper critical field of single-crystalline FeTe 0.6 Se 0.4 , 2010, 1001.4017.
[23] Y. Bang. Volovik effect in the ±s-wave state for the iron-based superconductors. , 2009, Physical review letters.
[24] H. Kontani,et al. Orbital-fluctuation-mediated superconductivity in iron pnictides: analysis of the five-orbital Hubbard-Holstein model. , 2009, Physical review letters.
[25] L. Taillefer,et al. Doping dependence of heat transport in the iron-arsenide superconductor Ba(Fe(1-x)Co(x))2As2: from isotropic to a strongly k-dependent gap structure. , 2009, Physical review letters.
[26] S. Y. Li,et al. Multigap nodeless superconductivity in FeSe x : Evidence from quasiparticle heat transport , 2009 .
[27] A. Sefat,et al. Bulk Superconductivity at 14 K in Single Crystals of Fe1+yTexSe1-x , 2009, 0902.1519.
[28] J. Chu,et al. Evidence for a nodal-line superconducting state in LaFePO. , 2008, Physical review letters.
[29] Jiangping Hu,et al. First-order magnetic and structural phase transitions in Fe1+ySexTe1-x , 2008, 0811.0195.
[30] P. Canfield,et al. Evidence for two-gap superconductivity in Ba 0.55 K 0.45 Fe 2 As 2 from directional point-contact Andreev-reflection spectroscopy , 2008, 0809.1566.
[31] A. Amato,et al. Evidence of nodeless superconductivity in FeSe 0.85 from a muon-spin-rotation study of the in-plane magnetic penetration depth , 2008 .
[32] F. Hsu,et al. Tellurium substitution effect on superconductivity of the α-phase iron selenide , 2008, 0808.0474.
[33] M. Fang,et al. Superconductivity close to magnetic instability in Fe ( Se 1 − x Te x ) 0.82 , 2008, 0807.4775.
[34] M. Johannes,et al. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx. , 2008, Physical review letters.
[35] David J. Singh,et al. Density functional study of FeS, FeSe and FeTe: Electronic structure, magnetism, phonons and superconductivity , 2008, 0807.4312.
[36] F. Hsu,et al. Superconductivity in the PbO-type structure α-FeSe , 2008, Proceedings of the National Academy of Sciences.
[37] T. Kondo,et al. Momentum dependence of the superconducting gap in NdFeAsO0.9F0.1 single crystals measured by angle resolved photoemission spectroscopy. , 2008, Physical review letters.
[38] X. Dai,et al. Observation of Fermi-surface–dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2 , 2008, 0807.0419.
[39] Z. Ren,et al. Thorium-doping–induced superconductivity up to 56 K in Gd1−xThxFeAsO , 2008, 0804.4290.
[40] R. Arita,et al. Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1-xFx. , 2008, Physical review letters.
[41] M. Du,et al. Density functional study of LaFeAsO(1-x)F(x): a low carrier density superconductor near itinerant magnetism. , 2008, Physical review letters.
[42] Yuxing Wang,et al. Phenomenological two-gap model for the specific heat of MgB2 , 2001, cond-mat/0107196.
[43] B. Mühlschlegel. Die thermodynamischen Funktionen des Supraleiters , 1959 .