Multi-Objective Artificial Bee Colony algorithm applied to the bi-objective orienteering problem

Abstract We propose a new evolutionary computation approach for solving the multi-objective orienteering problem. This problem has applications in different fields like routing problems or logistic problems. In our case, the final motivation is the design of individual tourist routes. The tourists have different priorities about points of interests grouped into categories (for example, cultural or leisure), so, a multi-objective solution system is needed. In order to obtain the best Pareto solutions, the Artificial Bee Colony algorithm (based on swarm intelligence) has been adapted to the multi-objective context. The performance of this approach has been compared with two previous algorithms from the literature for the bi-objective orienteering problem (P-ACO and P-VNS), in benchmark instances and real-world instances. The results indicate that this new approach is good for solving the multi-objective orienteering problem.

[1]  Hanning Chen,et al.  Solving Multiobjective Optimization Problems Using Artificial Bee Colony Algorithm , 2011 .

[2]  Carlos A. Coello Coello,et al.  Advances in Multi-Objective Nature Inspired Computing , 2010, Advances in Multi-Objective Nature Inspired Computing.

[3]  Mauricio G. C. Resende,et al.  Multiobjective GRASP with Path Relinking , 2015, Eur. J. Oper. Res..

[4]  G. Croes A Method for Solving Traveling-Salesman Problems , 1958 .

[5]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[6]  Dalaijargal Purevsuren,et al.  Evolutionary multiobjective optimization algorithms with path relinking for Bi-Orienteering problem , 2015, 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS).

[7]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[8]  Hoong Chuin Lau,et al.  Orienteering Problem: A survey of recent variants, solution approaches and applications , 2016, Eur. J. Oper. Res..

[9]  Jiuyuan Huo,et al.  An Improved Multi-Objective Artificial Bee Colony Optimization Algorithm with Regulation Operators , 2017, Inf..

[10]  Dirk Van Oudheusden,et al.  A guided local search metaheuristic for the team orienteering problem , 2009, Eur. J. Oper. Res..

[11]  R. Vohra,et al.  The Orienteering Problem , 1987 .

[12]  Yudong Zhang,et al.  Feed‐forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection , 2015, Int. J. Imaging Syst. Technol..

[13]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[14]  Kalyanmoy Deb,et al.  Multi-Objective Evolutionary Algorithms , 2015, Handbook of Computational Intelligence.

[15]  Nicola Beume,et al.  On the Complexity of Computing the Hypervolume Indicator , 2009, IEEE Transactions on Evolutionary Computation.

[16]  Dervis Karaboga,et al.  On clarifying misconceptions when comparing variants of the Artificial Bee Colony Algorithm by offering a new implementation , 2015, Inf. Sci..

[17]  Michel Gendreau,et al.  Traveling Salesman Problems with Profits , 2005, Transp. Sci..

[18]  David J. Sheskin,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .

[19]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[20]  Dervis Karaboga,et al.  A comprehensive survey: artificial bee colony (ABC) algorithm and applications , 2012, Artificial Intelligence Review.

[21]  Bruce L. Golden,et al.  The team orienteering problem , 1996 .

[22]  Hao Zhang,et al.  A hybrid multi-objective artificial bee colony algorithm for burdening optimization of copper strip production , 2012 .

[23]  Yudong Zhang,et al.  MAGNETIC RESONANCE BRAIN IMAGE CLASSIFICATION BY AN IMPROVED ARTIFICIAL BEE COLONY ALGORITHM , 2011 .

[24]  Alain Hertz,et al.  Metaheuristics for the team orienteering problem , 2005, J. Heuristics.

[25]  Yudong Zhang,et al.  Optimal Multi-Level Thresholding Based on Maximum Tsallis Entropy via an Artificial Bee Colony Approach , 2011, Entropy.

[26]  Dirk Van Oudheusden,et al.  The orienteering problem: A survey , 2011, Eur. J. Oper. Res..

[27]  Richard F. Hartl,et al.  Metaheuristics for the bi-objective orienteering problem , 2009, Swarm Intelligence.

[28]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[29]  Marjan Mernik,et al.  On the Importance of the Artificial Bee Colony Control Parameter 'Limit' , 2017, Inf. Technol. Control..

[30]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[31]  Bruce L. Golden,et al.  A fast and effective heuristic for the orienteering problem , 1996 .

[32]  T. Tsiligirides,et al.  Heuristic Methods Applied to Orienteering , 1984 .

[33]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .