Approximating Infinity-Dimensional Stochastic Darcy's Equations without Uniform Ellipticity

We consider a stochastic Darcy's pressure equation whose coefficient is generated by a white noise process on a Hilbert space employing the ordinary (rather than the Wick) product. A weak form of this equation involves different spaces for the solution and test functions and we establish a continuous inf-sup condition and well-posedness of the problem. We generalize the numerical approximations proposed in Benth and Theting [Stochastic Anal. Appl., 20 (2002), pp. 1191-1223] for Wick stochastic partial differential equations to the ordinary product stochastic pressure equation. We establish discrete inf-sup conditions and provide a priori error estimates for a wide class of norms. The proposed numerical approximation is based on Wiener-Chaos finite element methods and yields a positive definite symmetric linear system. We also improve and generalize the approximation results of Benth and Gjerde [Stochastics Stochastics Rep., 63 (1998), pp. 313-326] and Cao [Stochastics, 78 (2006), pp. 179-187] when a (generalized) process is truncated by a finite Wiener-Chaos expansion. Finally, we present numerical experiments to validate the results.

[1]  Nobuaki Obata,et al.  White Noise Calculus and Fock Space , 1994 .

[2]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[3]  I︠u︡. M. Berezanskiĭ Selfadjoint operators in spaces of functions of infinitely many variables , 1986 .

[4]  T. G. Theting,et al.  Solving wick-stochastic boundary value problems using a finite element method , 2000 .

[5]  G. Prato An Introduction to Infinite-Dimensional Analysis , 2006 .

[6]  Felipe Pereira,et al.  Crossover from Nonlinearity Controlled to Heterogeneity Controlled Mixing in Two-Phase Porous Media Flows , 2003 .

[7]  G. Parisi Brownian motion , 2005, Nature.

[8]  Ivo Babuška,et al.  On solving elliptic stochastic partial differential equations , 2002 .

[9]  Roger Ghanem,et al.  Numerical solution of spectral stochastic finite element systems , 1996 .

[10]  V. Bogachev Gaussian Measures on a , 2022 .

[11]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[12]  Yanzhao Cao,et al.  On Convergence rate of Wiener-Ito expansion for generalized random variables , 2006 .

[13]  Claudio Canuto,et al.  A fictitious domain approach to the numerical solution of PDEs in stochastic domains , 2007, Numerische Mathematik.

[14]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[15]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[16]  Andreas Keese,et al.  Review of Recent Developments in the Numerical Solution of Stochastic Partial Differential Equations (Stochastic Finite Elements)A , 2003 .

[17]  F. Benth,et al.  Convergence Rates for Finite Element Approximations of Stochastic Partial Differential Equations , 1998 .

[18]  H. Matthies Stochastic finite elements: Computational approaches to stochastic partial differential equations , 2008 .

[19]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[20]  Paul Malliavin,et al.  Integration and Probability , 1995, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[21]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[22]  H. Kuo Gaussian Measures in Banach Spaces , 1975 .

[23]  Marcus Sarkis,et al.  Stochastic Galerkin Method for Elliptic Spdes: A White Noise Approach , 2006 .

[24]  Ambar N. Sengupta,et al.  A New Class of White Noise Generalized Functions , 1998 .

[25]  Fred Espen Benth,et al.  SOME REGULARITY RESULTS FOR THE STOCHASTIC PRESSURE EQUATION OF WICK-TYPE , 2002 .

[26]  V. Bally,et al.  STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[27]  Radu Alexandru Todor,et al.  Robust Eigenvalue Computation for Smoothing Operators , 2006, SIAM J. Numer. Anal..

[28]  Chao Jin,et al.  Parallel Domain Decomposition Methods for Stochastic Elliptic Equations , 2007, SIAM J. Sci. Comput..

[29]  R. Ghanem Stochastic Finite Elements For Heterogeneous Media with Multiple Random Non-Gaussian Properties , 1997 .

[30]  S. J. Taylor BROWNIAN MOTION (Applications of Mathematics, 11) , 1982 .

[31]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[32]  C. P. Gupta,et al.  Applications of Mathematics , 2007 .

[33]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[34]  Christoph Schwab,et al.  Sparse Finite Elements for Stochastic Elliptic Problems – Higher Order Moments , 2003, Computing.

[35]  Bernt Øksendal,et al.  Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach , 1996 .

[36]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[37]  Hui-Hsiung Kuo,et al.  White noise distribution theory , 1996 .

[38]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[39]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[40]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..