Advances in Neural Network Modeling

Neural networks have become standard tools in modeling and classiication. In this paper we discuss some advancements in controling the model complexity in neural network modeling, and give some practical advise to users of these techniques.

[1]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[2]  Yann LeCun,et al.  Tangent Prop - A Formalism for Specifying Selected Invariances in an Adaptive Network , 1991, NIPS.

[3]  John E. Moody,et al.  The Effective Number of Parameters: An Analysis of Generalization and Regularization in Nonlinear Learning Systems , 1991, NIPS.

[4]  Judea Pearl,et al.  Belief Networks Revisited , 1993, Artif. Intell..

[5]  Geoffrey E. Hinton,et al.  Simplifying Neural Networks by Soft Weight-Sharing , 1992, Neural Computation.

[6]  Yaser S. Abu-Mostafa,et al.  Hints and the VC Dimension , 1993, Neural Computation.

[7]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[8]  Michael I. Jordan,et al.  Learning from Incomplete Data , 1994 .

[9]  Timothy Masters,et al.  Advanced algorithms for neural networks: a C++ sourcebook , 1995 .

[10]  Warren S. Sarle,et al.  Stopped Training and Other Remedies for Overfitting , 1995 .

[11]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[12]  Jouko Lampinen,et al.  Using Background Knowledge in Neural Network Learning , 1996 .

[13]  J. Lampinen,et al.  Using Background Knowledge in Multilayer Perceptron Learning , 1997 .

[14]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[15]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[16]  Geoffrey E. Hinton Connectionist Learning Procedures , 1989, Artif. Intell..

[17]  Michael I. Jordan,et al.  Modular and hierarchical learning systems , 1998 .

[18]  Christopher M. Bishop,et al.  Regularization and complexity control in feed-forward networks , 1995 .

[19]  David S. Touretzky,et al.  Learning with Ensembles: How Over--tting Can Be Useful , 1996 .

[20]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[21]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[22]  Christopher M. Bishop,et al.  Curvature-driven smoothing: a learning algorithm for feedforward networks , 1993, IEEE Trans. Neural Networks.