The LSST DESC DC2 Simulated Sky Survey

We describe the simulated sky survey underlying the second data challenge (DC2) carried out in preparation for analysis of the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) by the LSST Dark Energy Science Collaboration (LSST DESC). Significant connections across multiple science domains will be a hallmark of LSST; the DC2 program represents a unique modeling effort that stresses this interconnectivity in a way that has not been attempted before. This effort encompasses a full end-to-end approach: starting from a large N-body simulation, through setting up LSST-like observations including realistic cadences, through image simulations, and finally processing with Rubin’s LSST Science Pipelines. This last step ensures that we generate data products resembling those to be delivered by the Rubin Observatory as closely as is currently possible. The simulated DC2 sky survey covers six optical bands in a wide-fast-deep area of approximately 300 deg2, as well as a deep drilling field of approximately 1 deg2. We simulate 5 yr of the planned 10 yr survey. The DC2 sky survey has multiple purposes. First, the LSST DESC working groups can use the data set to develop a range of DESC analysis pipelines to prepare for the advent of actual data. Second, it serves as a realistic test bed for the image processing software under development for LSST by the Rubin Observatory. In particular, simulated data provide a controlled way to investigate certain image-level systematic effects. Finally, the DC2 sky survey enables the exploration of new scientific ideas in both static and time domain cosmology.

[1]  H. Hoekstra,et al.  KiDS-1000 cosmology: Cosmic shear constraints and comparison between two point statistics , 2020, Astronomy & Astrophysics.

[2]  H. Hoekstra,et al.  KiDS-1000 catalogue: Weak gravitational lensing shear measurements , 2020, Astronomy & Astrophysics.

[3]  G. Narayan,et al.  GHOST: Using Only Host Galaxy Information to Accurately Associate and Distinguish Supernovae , 2020, 2008.09630.

[4]  KiDS+VIKING-450: Improved cosmological parameter constraints from redshift calibration with self-organising maps , 2020, Astronomy & Astrophysics.

[5]  T Glanzman,et al.  The LSST DESC data challenge 1: generation and analysis of synthetic images for next-generation surveys , 2020, Monthly Notices of the Royal Astronomical Society.

[6]  Andrew P. Hearin,et al.  Surrogate modelling the Baryonic Universe – I. The colour of star formation , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  Nan Li,et al.  CosmoDC2: A Synthetic Sky Catalog for Dark Energy Science with LSST , 2019, The Astrophysical Journal Supplement Series.

[8]  J. Meyers,et al.  Shear Measurement Bias Due to Spatially Varying Spectral Energy Distributions in Galaxies , 2019, The Astrophysical Journal.

[9]  Yen-Ting Lin,et al.  Second data release of the Hyper Suprime-Cam Subaru Strategic Program , 2019, Publications of the Astronomical Society of Japan.

[10]  Hal Finkel,et al.  The Outer Rim Simulation: A Path to Many-core Supercomputers , 2019, The Astrophysical Journal Supplement Series.

[11]  S. M. Fall,et al.  WFIRST: The Essential Cosmology Space Observatory for the Coming Decade , 2019, 1904.01174.

[12]  C. J. Burke,et al.  Deformation of Optics for Photon Monte Carlo Simulations , 2019, The Astrophysical Journal.

[13]  Umaa Rebbapragada,et al.  Machine Learning for the Zwicky Transient Facility , 2019, Publications of the Astronomical Society of the Pacific.

[14]  David O. Jones,et al.  The Foundation Supernova Survey: Measuring Cosmological Parameters with Supernovae from a Single Telescope , 2018, The Astrophysical Journal.

[15]  M. Sullivan,et al.  First Cosmology Results Using Type Ia Supernovae from the Dark Energy Survey: Photometric Pipeline and Light-curve Data Release , 2018, The Astrophysical Journal.

[16]  M. Sullivan,et al.  First Cosmology Results Using SNe Ia from the Dark Energy Survey: Analysis, Systematic Uncertainties, and Validation , 2018, The Astrophysical Journal.

[17]  P. Nugent,et al.  Rates and Properties of Supernovae Strongly Gravitationally Lensed by Elliptical Galaxies in Time-domain Imaging Surveys , 2018, The Astrophysical Journal Supplement Series.

[18]  David N. Spergel,et al.  Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data , 2018, Publications of the Astronomical Society of Japan.

[19]  S. Plaszczynski,et al.  Analysing billion-objects catalogue interactively: ApacheSpark for physicists , 2018, Astron. Comput..

[20]  Andrew P. Hearin,et al.  UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0−10 , 2018, Monthly Notices of the Royal Astronomical Society.

[21]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[22]  N. E. Sommer,et al.  FIRST COSMOLOGY RESULTS USING TYPE IA SUPERNOVAE FROM THE DARK ENERGY SURVEY: ANALYSIS, SYSTEMATIC UNCERTAINTIES, AND VALIDATION , 2019 .

[23]  Daniel A. Goldstein,et al.  Rates and Properties of Strongly Gravitationally Lensed Supernovae and their Host Galaxies in Time-Domain Imaging Surveys , 2018 .

[24]  P. O'Connor,et al.  Integration and verification testing of the LSST camera , 2018, Astronomical Telescopes + Instrumentation.

[25]  Lynne Jones,et al.  Monitoring LSST system performance during construction , 2018, Astronomical Telescopes + Instrumentation.

[26]  O. Ilbert,et al.  The many flavours of photometric redshifts , 2018, Nature Astronomy.

[27]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[28]  Christian Arnault,et al.  FITS Data Source for Apache Spark , 2018 .

[29]  Adam Amara,et al.  lenstronomy: Multi-purpose gravitational lens modelling software package , 2018, Physics of the Dark Universe.

[30]  Kendrick M. Smith,et al.  Exploring the Brighter-fatter Effect with the Hyper Suprime-Cam , 2017, The Astronomical Journal.

[31]  Rachel Mandelbaum,et al.  Weak Lensing for Precision Cosmology , 2017, Annual Review of Astronomy and Astrophysics.

[32]  David O. Jones,et al.  The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.

[33]  Andrew P. Hearin,et al.  DESCQA: An Automated Validation Framework for Synthetic Sky Catalogs , 2017, 1709.09665.

[34]  C. B. D'Andrea,et al.  Dark Energy Survey Year 1 results: weak lensing shape catalogues , 2017, Monthly Notices of the Royal Astronomical Society.

[35]  B. Yanny,et al.  Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.

[36]  D. Gerdes,et al.  Dark Energy Survey Year 1 results: the impact of galaxy neighbours on weak lensing cosmology with IM3SHAPE , 2017, 1708.01534.

[37]  Satoshi Miyazaki,et al.  The first-year shear catalog of the Subaru Hyper Suprime-Cam Subaru Strategic Program Survey , 2017, 1705.06745.

[38]  Yukiko Kamata,et al.  First data release of the Hyper Suprime-Cam Subaru Strategic Program , 2017, 1702.08449.

[39]  C. Hern'andez-Monteagudo,et al.  The effect of photometric redshift uncertainties on galaxy clustering and baryonic acoustic oscillations , 2016, 1610.09688.

[40]  David O. Jones,et al.  Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological Parameters , 2017, 1710.00846.

[41]  A. Nomerotski,et al.  Properties of tree rings in LSST sensors , 2017 .

[42]  Song Huang,et al.  The Hyper Suprime-Cam Software Pipeline , 2017, 1705.06766.

[43]  Vanessa Sochat,et al.  Singularity: Scientific containers for mobility of compute , 2017, PloS one.

[44]  Erin S. Sheldon,et al.  Practical Weak-lensing Shear Measurement with Metacalibration , 2017, 1702.02601.

[45]  Xiaohui Fan,et al.  GALACTIC EXTINCTION AND REDDENING FROM THE SOUTH GALACTIC CAP u-BAND SKY SURVEY: u-BAND GALAXY NUMBER COUNTS AND u − r COLOR DISTRIBUTION , 2017, 1701.01576.

[46]  J. Sebag,et al.  An integrated modeling framework for the Large Synoptic Survey Telescope (LSST) , 2016, Astronomical Telescopes + Instrumentation.

[47]  Michael A. Reuter,et al.  Simulating the LSST OCS for conducting survey simulations using the LSST scheduler , 2016, Astronomical Telescopes + Instrumentation.

[48]  Francisco Delgado,et al.  The LSST Scheduler from design to construction , 2016, Astronomical Telescopes + Instrumentation.

[49]  Andrew J. Connolly,et al.  An optical to IR sky brightness model for the LSST , 2016, Astronomical Telescopes + Instrumentation.

[50]  P. Marshall,et al.  Time delay cosmography , 2016, The Astronomy and Astrophysics Review.

[51]  Hu Zhan,et al.  TESTING LSST DITHER STRATEGIES FOR SURVEY UNIFORMITY AND LARGE-SCALE STRUCTURE SYSTEMATICS , 2016, 1605.00555.

[52]  Katarzyna E. Pomian,et al.  HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS , 2016, 1604.06138.

[53]  R. C. Smith,et al.  Crowdsourcing quality control for Dark Energy Survey images , 2015, Astron. Comput..

[54]  Astronomy,et al.  The massive end of the luminosity and stellar mass functions and clustering from CMASS to SDSS: evidence for and against passive evolution , 2015, 1510.07702.

[55]  T. Eifler,et al.  The impact of intrinsic alignment on current and future cosmic shear surveys , 2015, 1506.08730.

[56]  Hal Finkel,et al.  HACC: Simulating Sky Surveys on State-of-the-Art Supercomputing Architectures , 2014, 1410.2805.

[57]  M. Sullivan,et al.  THE DIFFERENCE IMAGING PIPELINE FOR THE TRANSIENT SEARCH IN THE DARK ENERGY SURVEY , 2015, 1507.05137.

[58]  A study of astrometric distortions due to “tree rings” in CCD sensors using LSST Photon Simulator , 2015 .

[59]  J. G. Jernigan,et al.  SIMULATION OF ASTRONOMICAL IMAGES FROM OPTICAL SURVEY TELESCOPES USING A COMPREHENSIVE PHOTON MONTE CARLO APPROACH , 2015, 1504.06570.

[60]  R. C. Wolf,et al.  AUTOMATED TRANSIENT IDENTIFICATION IN THE DARK ENERGY SURVEY , 2015, 1504.02936.

[61]  Gary M. Bernstein,et al.  Characterization and correction of charge-induced pixel shifts in DECam , 2015, 1501.02802.

[62]  P. Astier,et al.  Evidence for self-interaction of charge distribution in charge-coupled devices , 2015, 1501.01577.

[63]  Martin Kilbinger,et al.  Cosmology with cosmic shear observations: a review , 2014, Reports on progress in physics. Physical Society.

[64]  J. Meyers,et al.  IMPACT OF ATMOSPHERIC CHROMATIC EFFECTS ON WEAK LENSING MEASUREMENTS , 2014, 1409.6273.

[65]  Robert Armstrong,et al.  GalSim: The modular galaxy image simulation toolkit , 2014, Astron. Comput..

[66]  Stephen T. Ridgway,et al.  THE VARIABLE SKY OF DEEP SYNOPTIC SURVEYS , 2014, 1409.3265.

[67]  Xiao-Li Meng,et al.  STRONG LENS TIME DELAY CHALLENGE. II. RESULTS OF TDC1 , 2014, 1409.1254.

[68]  Andrew J. Connolly,et al.  An end-to-end simulation framework for the Large Synoptic Survey Telescope , 2014, Astronomical Telescopes and Instrumentation.

[69]  George Z. Angeli,et al.  Real time wavefront control system for the Large Synoptic Survey Telescope (LSST) , 2014, Astronomical Telescopes and Instrumentation.

[70]  Pierre Antilogus,et al.  A framework for modeling the detailed optical response of thick, multiple segment, large format sensors for precision astronomy applications , 2014, Astronomical Telescopes and Instrumentation.

[71]  P. Astier,et al.  The brighter-fatter effect and pixel correlations in CCD sensors , 2014, 1402.0725.

[72]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[73]  Jun Zhang,et al.  Accurate shear measurement with faint sources , 2013, 1312.5514.

[74]  A. Pastorello,et al.  COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY , 2013, 1310.3828.

[75]  Aaron Roodman,et al.  THE THIRD GRAVITATIONAL LENSING ACCURACY TESTING (GREAT3) CHALLENGE HANDBOOK , 2013, 1308.4982.

[76]  R. J. Brunner,et al.  The SDSS Galaxy Angular Two-Point Correlation Function , 2013, 1303.2432.

[77]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[78]  Ming Liang,et al.  Prototype pipeline for LSST wavefront sensing and reconstruction , 2012, Other Conferences.

[79]  R. Nichol,et al.  TYPE Ia SUPERNOVA PROPERTIES AS A FUNCTION OF THE DISTANCE TO THE HOST GALAXY IN THE SDSS-II SN SURVEY , 2012, 1206.2210.

[80]  E. O. Ofek,et al.  Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era , 2011, 1106.5491.

[81]  J. Mcenery,et al.  Fermi Gamma-Ray Space Telescope , 2012 .

[82]  Predrag Buncic,et al.  Distributing LHC application software and conditions databases using the CernVM file system , 2011 .

[83]  H. Hoekstra,et al.  The impact of high spatial frequency atmospheric distortions on weak-lensing measurements , 2011, 1110.4913.

[84]  August E. Evrard,et al.  Cosmological Parameters from Observations of Galaxy Clusters , 2011, 1103.4829.

[85]  Timothy M. Brown,et al.  KEPLER INPUT CATALOG: PHOTOMETRIC CALIBRATION AND STELLAR CLASSIFICATION , 2011, 1102.0342.

[86]  J. Anthony Tyson,et al.  Toward Precision LSST Weak-Lensing Measurement. I. Impacts of Atmospheric Turbulence and Optical Aberration , 2010, 1011.1913.

[87]  A. Benson Galacticus: A Semi-Analytic Model of Galaxy Formation , 2010, 1008.1786.

[88]  Victor L. Krabbendam,et al.  Simulating the LSST system , 2010, Astronomical Telescopes + Instrumentation.

[89]  E. Bullock,et al.  MODELING THE TIME VARIABILITY OF SDSS STRIPE 82 QUASARS AS A DAMPED RANDOM WALK , 2010, 1004.0276.

[90]  John P. Wisniewski,et al.  A WHITE LIGHT MEGAFLARE ON THE dM4.5e STAR YZ CMi , 2010, 1003.3057.

[91]  R. Nichol,et al.  MEASUREMENTS OF THE RATE OF TYPE Ia SUPERNOVAE AT REDSHIFT ≲0.3 FROM THE SLOAN DIGITAL SKY SURVEY II SUPERNOVA SURVEY , 2010, 1001.4995.

[92]  Jeffrey E. Cleve,et al.  Kepler Data Release 3 Notes , 2010 .

[93]  Ucsb,et al.  Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys , 2010, 1001.2037.

[94]  Z. Ivezic,et al.  THE MILKY WAY TOMOGRAPHY WITH SDSS. III. STELLAR KINEMATICS , 2009, 0909.0013.

[95]  M. Bernardi,et al.  The luminosity and stellar mass Fundamental Plane of early‐type galaxies , 2008, 0810.4924.

[96]  Mamoru Doi,et al.  THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.

[97]  Jeffrey A. Newman,et al.  Calibrating Redshift Distributions beyond Spectroscopic Limits with Cross-Correlations , 2008, 0805.1409.

[98]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[99]  A. Amara,et al.  Point spread function calibration requirements for dark energy from cosmic shear , 2007, 0711.4886.

[100]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[101]  D. Calzetti,et al.  COSMOS: Hubble Space Telescope Observations , 2006, astro-ph/0612306.

[102]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview , 2006, astro-ph/0612305.

[103]  Jun Zhang Measuring the cosmic shear in Fourier space , 2006, astro-ph/0612146.

[104]  Andrew A. West,et al.  Low-Mass Dwarf Template Spectra from the Sloan Digital Sky Survey , 2006, astro-ph/0610639.

[105]  Peter Sinclaire,et al.  CCD riddle: a) signal vs time: linear; b) signal vs variance: non-linear , 2006, SPIE Astronomical Telescopes + Instrumentation.

[106]  J. Neill,et al.  Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.

[107]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[108]  A. Burrows,et al.  L and T Dwarf Models and the L to T Transition , 2005, astro-ph/0509066.

[109]  J. Neill,et al.  The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda,and w from the First Year Data Set , 2005, astro-ph/0510447.

[110]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[111]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[112]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[113]  John T. Rayner,et al.  An Infrared Spectroscopic Sequence of M, L, and T Dwarfs , 2004, astro-ph/0412313.

[114]  J. Lépine,et al.  Models for Interstellar Extinction in the Galaxy , 2005 .

[115]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003, astro-ph/0401052.

[116]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[117]  Brent L Ellerbroek,et al.  Efficient computation of minimum-variance wave-front reconstructors with sparse matrix techniques. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[118]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[119]  D. Branch,et al.  Determination of the Hubble Constant Using a Two-Parameter Luminosity Correction for Type Ia Supernovae , 1999, astro-ph/9904347.

[120]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[121]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[122]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[123]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[124]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[125]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[126]  Pierre Bergeron,et al.  PHOTOMETRIC CALIBRATION OF HYDROGEN- AND HELIUM-RICH WHITE DWARF MODELS , 1995 .

[127]  S. Srihari Mixture Density Networks , 1994 .

[128]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[129]  B. Brown Proceedings of the Society of Photo-optical Instrumentation Engineers, Seminar-in-depth, 'Solving Problems in Security, Surveillance and Law Enforcement with Optical Instrumentation' , 1974 .