A COMPRESSIVE SENSING APPROACH FOR SYNTHETIC APERTURE IMAGING RADIOMETERS

The aperture synthesis technology represents a promising new approach to microwave radiometers for high-resolution observa- tions of the Earth from geostationary orbit. However, the future ap- plication of the new technology may be limited by its large number of antennas, receivers, and correlators. In order to reduce signiflcantly the complexity of the on-board hardware requirements, a novel method based on the recently developed theory of compressive sensing (CS) is proposed in this paper. Due to the fact that the brightness temperature distributions of the Earth have a sparse representation in some proper transform domain | for example, in terms of spatial flnite-difierences or their wavelet coe-cients, we use the CS approach to signiflcantly undersample the visibility function. Thus the number of antennas, re- ceivers, and correlators can be further reduced than those based on the traditional methods that obey the Shannon/Nyquist sampling the- orem. The reconstruction is performed by minimizing the '1 norm of a transformed image. The efiectiveness of the proposed approach is validated by numerical simulations using the image corresponding to AMSU-A over the Paciflc.

[1]  P. Vandergheynst,et al.  Compressed sensing imaging techniques for radio interferometry , 2008, 0812.4933.

[2]  Athanasios Mouchtaris,et al.  Single-Channel and Multi-Channel Sinusoidal Audio Coding Using Compressed Sensing , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[3]  Joel A. Tropp,et al.  ALGORITHMS FOR SIMULTANEOUS SPARSE APPROXIMATION , 2006 .

[4]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[5]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[6]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[7]  Yves Wiaux,et al.  Compressed sensing for radio interferometric imaging: Review and future direction , 2011, 2011 18th IEEE International Conference on Image Processing.

[8]  T. Blumensath,et al.  Theory and Applications , 2011 .

[9]  Stefania Bonafoni,et al.  Microwave Radiometry Imaging for Forest Fire Detection: a Simulation Study , 2011 .

[10]  Joel A. Tropp,et al.  Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit , 2006, Signal Process..

[11]  Yonina C. Eldar,et al.  From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals , 2009, IEEE Journal of Selected Topics in Signal Processing.

[12]  Adriano Camps,et al.  The processing of hexagonally sampled signals with standard rectangular techniques: application to 2-D large aperture synthesis interferometric radiometers , 1997, IEEE Trans. Geosci. Remote. Sens..

[13]  U. R. Kraft Two-dimensional aperture synthesis radiometers in a low earth orbit mission and instrument analysis , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[14]  Ji Wu,et al.  Two dimensional least redundant array for interferometric synthetic aperture radiometer , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[15]  S. Muthukrishnan,et al.  Data streams: algorithms and applications , 2005, SODA '03.

[16]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[17]  Robert D. Nowak,et al.  Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation , 2010, IEEE Transactions on Information Theory.

[18]  Xiaoling Zhang,et al.  Linear Array SAR Imaging via Compressed Sensing , 2011 .

[19]  Yonina C. Eldar,et al.  Time-Delay Estimation From Low-Rate Samples: A Union of Subspaces Approach , 2009, IEEE Transactions on Signal Processing.

[20]  M. Martín-Neira,et al.  Fringe‐washing function calibration in aperture synthesis microwave radiometry , 2003 .

[21]  Jeffrey A. Fessler,et al.  Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities , 2003, IEEE Transactions on Medical Imaging.

[22]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[23]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[24]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[25]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[26]  Deanna Needell,et al.  Signal Recovery From Incomplete and Inaccurate Measurements Via Regularized Orthogonal Matching Pursuit , 2007, IEEE Journal of Selected Topics in Signal Processing.

[27]  J. Romberg,et al.  Imaging via Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[28]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[29]  Philippe Waldteufel,et al.  Apodization functions for 2-D hexagonally sampled synthetic aperture imaging radiometers , 2002, IEEE Trans. Geosci. Remote. Sens..

[30]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[31]  Huaping Xu,et al.  DATA ACQUISITION AND PROCESSING OF PARALLEL FREQUENCY SAR BASED ON COMPRESSIVE SENSING , 2013 .

[32]  Jin Au Kong,et al.  Progress in Electromagnetics Research , 1989 .

[33]  Yanping Wang,et al.  Convolution Back-Projection Imaging Algorithm for Downward-Looking Sparse Linear Array Three Dimensional Synthetic Aperture Radar , 2012 .

[34]  M. Lustig,et al.  Compressed Sensing MRI , 2008, IEEE Signal Processing Magazine.

[35]  A. Macovski,et al.  Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.

[36]  J. Claerbout,et al.  Hyperbolic estimation of sparse models from erratic data , 2012 .

[37]  Yin Zhang,et al.  Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..

[38]  Alexander M. Bronstein,et al.  Reconstruction in diffraction ultrasound tomography using nonuniform FFT , 2002, IEEE Transactions on Medical Imaging.

[39]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[40]  X. Wang,et al.  POLARIMETRIC SAR TOMOGRAPHY USING l2,1 MIXED NORM SPARSE RECONSTRUCTION METHOD , 2012, Progress In Electromagnetics Research.

[41]  Jie Chen,et al.  A Novel Image Formation Algorithm for High-Resolution Wide-Swath Spaceborne SAR Using Compressed Sensing on Azimuth Displacement Phase Center Antenna , 2012 .

[42]  Dapeng Lao,et al.  THE SPARSITY-PROMOTED SOLUTION TO THE UNDERSAMPLING TOF-PET IMAGING: NUMERICAL SIMULATIONS , 2013 .

[43]  Deanna Needell,et al.  Topics in Compressed Sensing , 2009, ArXiv.

[44]  Jing Li,et al.  Applications of Compressed Sensing for Multiple Transmitters Multiple Azimuth Beams SAR Imaging , 2012 .

[45]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[46]  Z. Liu,et al.  ADAPTIVE CLUTTER SUPPRESSION FOR AIRBORNE RANDOM PULSE REPETITION INTERVAL RADAR BASED ON COMPRESSED SENSING , 2012 .

[47]  Shunjun Wei,et al.  SPARSE RECONSTRUCTION FOR SAR IMAGING BASED ON COMPRESSED SENSING , 2010 .

[48]  J. C. Good,et al.  Aperture synthesis for microwave radiometers in space , 1983 .

[49]  Yudong Zhang,et al.  A Two-Level Iterative Reconstruction Method for Compressed Sensing MRI , 2011 .

[50]  Shannon T. Brown,et al.  Robust Array Configuration for a Microwave Interferometric Radiometer: Application to the GeoSTAR Project , 2007, IEEE Geoscience and Remote Sensing Letters.

[51]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[52]  Irene S. Karanasiou,et al.  Enhancement of a Microwave Radiometry Imaging System's Performance Using Left Handed Materials , 2011 .

[53]  Adriano Camps,et al.  The visibility function in interferometric aperture synthesis radiometry , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[54]  Xin Lu,et al.  NUFFT-Based Iterative Reconstruction Algorithm for Synthetic Aperture Imaging Radiometers , 2009, IEEE Geoscience and Remote Sensing Letters.