A polymeric-semiconductor-metal-complex hybrid photocatalyst for visible-light CO(2) reduction.

A polymeric carbon nitride semiconductor is demonstrated to photocatalyse CO2 reduction to formic acid under visible light (λ > 400 nm) with a high turnover number (>200 for 20 hours) and selectivity (>80%), when coupled with a molecular ruthenium complex as a catalyst.

[1]  Tsunehiro Tanaka,et al.  Photocatalytic conversion of CO2 in water over layered double hydroxides. , 2012, Angewandte Chemie.

[2]  P. A. Anderson,et al.  Designed Synthesis of Mononuclear Tris(heteroleptic) Ruthenium Complexes Containing Bidentate Polypyridyl Ligands , 1995 .

[3]  Hiroyuki Takeda,et al.  Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies , 2010 .

[4]  Tsunehiro Tanaka,et al.  PHOTOREDUCTION OF CARBON DIOXIDE WITH METHANE OVER ZRO2 , 1997 .

[5]  Kazuhiro Takanabe,et al.  Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. , 2010, Angewandte Chemie.

[6]  J. Lehn,et al.  Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy)32+–Co2+ combinations as homogeneous catalysts , 1983 .

[7]  O. Ishitani,et al.  Photochemical reduction of CO₂ using TiO₂: effects of organic adsorbates on TiO₂ and deposition of Pd onto TiO₂. , 2011, ACS applied materials & interfaces.

[8]  Hiroyuki Takeda,et al.  Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. , 2008, Journal of the American Chemical Society.

[9]  Koji Tanaka,et al.  Electrochemical CO2 reduction catalyzed by ruthenium complexes [Ru(bpy)2(CO)2]2+ and [Ru(bpy)2(CO)Cl]+. Effect of pH on the formation of CO and HCOO- , 1987 .

[10]  Allen J. Bard,et al.  Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen , 1995 .

[11]  A. Kudo,et al.  Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. , 2011, Journal of the American Chemical Society.

[12]  Osamu Ishitani,et al.  Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes , 2012, Proceedings of the National Academy of Sciences.

[13]  T. Kajino,et al.  Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor. , 2010, Angewandte Chemie.

[14]  M. Antonietti,et al.  Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. , 2009, Journal of the American Chemical Society.

[15]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[16]  T. Peng,et al.  Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light , 2013 .

[17]  M. Antonietti,et al.  Metal-free activation of CO2 by mesoporous graphitic carbon nitride. , 2007, Angewandte Chemie.

[18]  F. Molton,et al.  [Mn(bipyridyl)(CO)3Br]: an abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. , 2011, Angewandte Chemie.

[19]  T. Kajino,et al.  Direct assembly synthesis of metal complex-semiconductor hybrid photocatalysts anchored by phosphonate for highly efficient CO2 reduction. , 2011, Chemical communications.

[20]  E. Fujita,et al.  Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. , 2009, Accounts of chemical research.

[21]  Guohui Dong,et al.  Porous structure dependent photoreactivity of graphitic carbon nitride under visible light , 2012 .

[22]  M. Antonietti,et al.  Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light , 2009 .